
 
 
 

Data Analytic Tools for 
Inconsistency Detection in Large 

Data Sets 
Design Document 

 
 

 

 

 

 

 
 

Team 27 
Client - Kingland 

Advisers - Cai Ying 
Team Members/Roles - 

Logan Heitz (Team Lead), Camden Voigt (Technical Lead), 
CJ Konopka (Communication Lead), TJ Rogers (QA Lead) 

Team Email - sdmay18-27@iastate.edu 
Team Website - http://sdmay18-27.sd.ece.iastate.edu/ 

Revised: October 15, 2017 Version 1  

 

http://sdmay18-27.sd.ece.iastate.edu/


Table of Contents 
1 Introduction 2 

1.1  Acknowledgement 2 
1.2 Problem and Project Statement 2 
1.3 Operational Environment 2 
1.4   Intended Users and Uses 3 
1.5 Assumptions and Limitations 3 

1.5.1 Assumptions 3 
1.5.2 Limitations 3 

1.6   Expected End Product and Deliverables 3 

2. Specifications and Analysis 4 
2.1 Specifications 5 

2.1.1 Functional Requirements 5 
2.1.2 Non-Functional Requirements 5 

2.2 Proposed Design 5 
2.2.1 Module Design 6 

Configuration File 7 
Configuration Parser 8 
Raw Data Parser 9 
Inconsistency Checker 9 
Inconsistency Database 9 

2.3   Design Analysis 9 
2.3.1 Specification Fulfilment 9 

2.3.2 Strengths 10 
2.3.3 Weaknesses 10 

3   Testing and Implementation 11 
3.1   Hardware and software 11 
3.2 Modeling and Simulation 11 
3.3   Process 12 

3.3.1 Functional Testing 12 
3.3.2 Non-Functional Testing 12 

3.4 Implementation Issues and Challenges 12 
3.5 Results 12 

4 Closing Material 12 
4.1 Conclusion 13 
4.2 References 13 
4.3 Appendices 13 

1 



4.3.1 List of Figures 13 
 
 

1 Introduction 

1.1 Acknowledgement 
This project would not be possible without the assistance of the faculty 

advisor Dr. Cai. Working with Dr. Cai on this project are two graduate students 
Guolei Yang and Zehua Li who have provided invaluable in design and 
implementation of this project. Finally this project relies on the support of 
Kingland Systems for testing data and any other needed materials for 
implementation of the project. 

1.2 Problem and Project Statement 
Kingland processes a large amount of data that it receives from its clients 

everyday. This data can be relating to customers, companies, or agreements 
between entities. This data is compared to Kingland’s central database in order 
to detect inconsistencies and then added to the database. An example of an 
inconsistency would be two customer records containing the same social security 
number, but different names. This is an issue a social security number should be 
unique, as such, detecting such inconsistencies is important to Kingland’s clients. 
The database contains over 100 million records, and around 10% of these 
records are updated or inserted daily. Due to its size, this comparison takes 
several hours to run every day. This time stems from the fact the entire database 
cannot be loaded into main memory at one time and the use of SQL join 
statements to check for inconsistencies, which is inefficient. Kingland would like 
to process 100 million records for inconsistencies in an hour or less. Additionally 
this detection must begin with the latest version of the central database after the 
reports come in. 

1.3 Operational Environment 
Our product will operate on the backend of Kingland’s system and will be 

automated to detect inconsistencies on incoming reports. Thus, the product will 

2 



need to be able to operate with minimal user input and will need to generate 
results that can be integrated into Kingland’s existing infrastructure. 

  

1.4   Intended Users and Uses 
This project will supply Kingland’s analysts with information on 

inconsistencies within their records. The product will be on the backend of 
Kingland’s system and its processes will be automated. As such no users will 
directly interact with our system on a day to day passes as Kingland will display 
the results of our output using their own user interface. However, if Kingland 
wishes to improve the system in the future or needs to fix something their 
developers will need access to the code and documentation on how it works. 
Thus, it is important to provide material for future developers on this project. 

1.5 Assumptions and Limitations 

1.5.1 Assumptions 
● There will be a central database containing more than 100 million 

historical reports 
● The end product shall not require a user interface 
● The product will only need to detect equality comparisons 
● The central database will be periodically updated with new data 

1.5.2 Limitations 
● The program will not be able to be tested on the full sized dataset 
● The program cannot be tested with all possible configurations 
● Program will be deployed on a machine with less than 64 GB of RAM 

1.6   Expected End Product and Deliverables 
● System architecture of proprietary solution 

○ Delivery Date: 01/20/2017 
 

This deliverable will encompass the design of the proprietary 
solution that will be developed to solve this problem. This deliverable will 
be expanded on in the design document and will involve the overall 
system block diagram, UML class diagrams, and class documentation. 

3 



 
● System implementation of proprietary solution 

○ Delivery Date: 02/20/2017 
 

In addition to the architecture of the proprietary solution an 
implementation of the solution will be developed in java. This 
implementation will be provided to the client for use in their daily 
inconsistency checking. 

 
● Analysis of proprietary solution against industry standard solutions 

○ Delivery Date: 03/20/2017 
 

There are many standard industry solutions that could be utilized to 
solve this problem. Following the implementation of the proprietary 
solution the team will test the solution to determine its average runtime 
along with the detection rate of inconsistencies. The team will perform 
similar analysis of standard industry solutions and provide the findings to 
the client so they might evaluate which solution is best for their needs. 

 
● Test cases of solutions 

○ Delivery Date: 04/02/2017 
 

All test cases that are used for the solution will be provided for the 
client so they might verify the solution is valid using the test cases. They 
will also be able to utilize the test case if further development is needed for 
the project. 

 
● User manual 

○ Delivery Date: 04/02/2017 
 

A user manual that will discuss how to set up the application and 
automate its processes. This will include documentation on how to set up 
the configuration file for their needs. It will also include how they can 
incorporate the outputs of the application with their user interface. 

2. Specifications and Analysis 

4 



2.1 Specifications 

2.1.1 Functional Requirements 
● Doesn’t use SQL inner-join statements. 
● Utilize only relevant information. 
● Compare current records to previous records as well as other current 

records 
● Validate all fields are present in data 
● Handles various forms of input 
● Update central database after analysis 

2.1.2 Non-Functional Requirements 
● Perform inconsistency check in less than 1 hour for daily reports 
● Analyze 100 million or more records at a time 
● Solution should run on Kingland’s system 
● Less than 5% false positives 

2.2 Proposed Design 
Our proposed solution to this problem is to create a proprietary system 

that will utilize hashing to speed up comparisons and to reduce the memory 
required by the database. Hashing will improve the speed of comparisons as we 
only need to do equality checking. Therefore values can simply be compared 
after they are hashed to see if they are equal. This allows us to eliminate the 
current use of SQL inner join statements in favor of lookups on indexed columns. 
By index the entries in the database by the columns that are important for 
equality comparison we can quickly lookup information. Our solution also 
reduces the space of the table as we will only need to store the hash values 
which can be smaller than the original values and only stores those attributes 
that are necessary for inconsistency detection. This reduces the table size and 
allow more or all of it to be loaded into main memory at once.  
 

First, we will create a configuration file format. This file will specify how the 
we should process the daily reports received. We will then create a parser that 
will turn this file into a configuration object.Then we will create a parser which is a 
program that accept new data sent to Kingland in either XML, JSON, or some 
other format. The parser will run through this data and convert send it into the 

5 



database as specified by the configuration object. The parser may also update 
the central database which holds all records in their full state. Next, we will run an 
inconsistency checker which goes through either the inconsistency database 
using SQL lookups on the indexed columns and recognizes conflicts. Once a 
conflict has been found the inconsistency checker will go to the central database 
and update the correct records with an error code. An overview of the different 
modules in used in the project can be found in Figure 2.1. 

 
Figure 2.1: Block diagram of high-level system architecture. 

 
 

2.2.1 Module Design 
This section will present an analysis of the various modules that will be 

needed for this project. 

6 



Configuration File 
The configuration file will be an XML file with three major sections. The 

first of these is the input path which will take the path to either a file or a folder. 
Figure 2.2 shows how the inputpath should be specified if it is a file or a folder. 

 
Figure 2.2: Example XML input tags 

<inputpath>/path/to/file.xml</inputpath> 

<inputpath>/path/to/folder</inputpath> 

 
If a file is specified this will be used as the report and if a folder is specified it will 
utilize all files within the folder. This allows for easy processing of multiple 
reports. 

The second section is the exports. This section will specify all the ways to 
output the processed data. The output can be either a file type or a database. 
Both will require a location to be defined while a database will also require a 
driver, username, and password. An example of the exports section from the 
configuration file can be seen in figure 2.3. 
 
Figure 2.3: Example XML export tag 

<exports> 

<export type="database"> 
<location>http://localhost:3306/database</location> 

<dirver>mysql</dirver> 

<username>myusername</username> 

<password>mypassword</password> 

</export> 

<export type="file"> 
<location>~/path/to/file.xml</location> 

</export> 

</exports> 

 

Finally there will be a key element section that will contain information on 
all the attributes that we will need from the records contained in the report. This 
will include what key the attribute has along with a list of other keys the attribute 
may be called that are equivalent. It will include how the attribute should be 
outputted which is raw data and/or hash value. Figure 2.4 gives an example of 
how the key-elements will be formated in the configuration file. 
 
Figure 2.4: Example XML elements tag 

<key-elements> 

<element key="ssn"> 

7 



<output-format>binary</output-format> 

<output-format>md5</output-format> 

</element> 

<element key="name" optional-keys="firstname,lastname"> 
<output-format>raw</output-format> 

<output-format>binary</output-format> 

<output-format bits="128">hash</output-format> 
</element> 

</key-elements> 

Configuration Parser 
The configuration parser will have several components, the first of which is 

the configuration parser class. This class will take in a configuration file and 
output a configuration parser for the class by parsing over the XML. The 
configuration object will be a separate class that stores the a list of export 
objects, a list of element objects, and the input path. The element object will 
contain a key value, a list of alias keys, and a list of output format objects. The 
output format object will include an output type, the number of bits if hashing is 
used, and the hash function that should be used if applicable. The export object 
will store the export format, file or database, and the location to export to. If it is a 
database the object will also store the driver, username, and password. The UML 
diagram in Figure 2.5 shows the different classes and methods that will be 
included in this module. 
 
Figure 2.5: Configuration Parser UML class diagram 

 

8 



Raw Data Parser 
The raw data parser will utilize the config object that is created by the 

configuration parser in order to parse the records within the daily reports received by 
Kingland. The parse will parse through the XML of the input file and utilize the output 
formats defined within the element objects in order to determine how the elements 
should be outputted. It will than connect to a database or file to output the records. 

Inconsistency Checker 
The inconsistency checker will compare incoming records against existing 

records within the inconsistency database to find inconsistencies. This will be down by 
doing equality comparisons on the hashed or raw data values stored in the table that 
could have inconsistencies. An example of an inconsistency would be two different 
records containing the same social security number, but different names. This would be 
found by checking the table for the SSN and then comparing the name of those two 
records. The checker will then set a flag within the central database that an 
inconsistency with the record was detected. 

Inconsistency Database 
The inconsistency database is used to store the hashed and raw data 

values needed for inconsistency detection. The columns of this database will 
correspond to those keys and formats that are specified in the configuration file. 

 
Central Database 

The central database will be a database that contains all of the information 
from the reports. This database will not utilize hashing to reduce the table size. 
This will allow us to reference the real values of elements as needed. When an 
inconsistency is detected in the inconsistency database it will flag the 
corresponding reports in this database.  

2.3   Design Analysis 

2.3.1 Specification Fulfilment 
The design laid out in above fulfills the specifications laid out in section 2.1 

through a variety of methods. The use of a configuration file allows us to handle 
various forms of input and to utilize only the relevant information by any given 
scan by allowing Kingland to specify those things before the program runs. 
Creating a hashed database allows us to get rid of SQL inner-join statements 
because we can just do simple equality comparisons. It also lets us do 

9 



inconsistency checking in less than one hour because we can do equality checks 
very quickly. Also, by using a good hashing function we are able to only have a 
few conflicts and therefore only a few false positive marks. Finally, our design 
allows ours programs to easily access both the central database and the hashed 
database which makes comparing comparing and updating both very easy. 

2.3.2 Strengths 
This solution has several strengths that make it an appropriate choice for 

this problem. The first strength is the ease of implementation. This solution is 
built on a few small parts that can be implemented with relative ease. This will 
give more time to analyze the proposed solution against the existing solution and 
other industry solutions to determine its viability. Another strength of this solution 
is it is very modular. The solution is separated out into several distinct parts and 
changing one part will not require changes to the entire design. The solution also 
allows for us to quickly adapt to changes in the problem statement. The design of 
the configuration file allows for us to quickly add in new inconsistencies if needed 
and modify the settings of current ones to adapt to any changes we encounter. 
Finally, the configuration file also allows us to testing much easier as it can be 
utilized to output to multiple different types of database or files so they can be 
tested against each other. 

2.3.3 Weaknesses 

This solution comes with a few tradeoffs including having to duplicate data 
into another database and the possibility of not being able to detect every type of 
inter-record inconsistency. Both of these shortcomings are small issues. While 
usually duplicating data isn’t a great solution, in this case the duplicated data will 
actually take up less space than the original and only needs to updated as often 
as the original data. Also, not being able to solve every inconsistency isn’t a huge 
issue as even if we can only solve a large amount of these issues it would still 
reduce the time needed to run a inconsistency scan significantly. 
 

A more significant issue with this solution is the potential for false positive 
detections of inconsistencies. Since the values we compare will be hashed there 
is a possibility of collisions. This is a tradeoff of speeding up the system that is 
deemed acceptable. As a analyst will need to go through the flagged 
inconsistencies in any case it will be a simple matter for them to mark it as a false 
positive and move on. 
 

10 



The biggest shortcoming of our proposed solution would be that a third 
party solution may be able to do this job almost as well. In this case it would 
almost be easier for Kingland to use this third party solution as it would have 
better support from a full development team, and could be used in some of 
Kingland’s other solutions.  

3 Testing and Implementation 

3.1   Hardware and software 

We will be utilizing several software testing libraries to verify that the 
requirements for  
our product are met. The libraries we will be using are as follows: 

● JUnit- A unit testing framework designed for the Java programming 
language. 

● Mockito - Allows programmers to create and test double objects (mock 
objects) in automated unit tests for the purpose of Test-driven 
Development (TDD) or Behaviour Driven Development (BDD). 

● Arquillian - Allows developers to easily create automated integration, 
functional and acceptance tests for Java. Arquillian also allows the 
developer to run tests in the run-time so you don’t have to manage the 
run-time from the test(or the build). Arquillian can be used to manage the 
lifecycle of the container (or containers), bundling test cases, dependent 
classes and resources. It is also capable of deploying archives into 
containers and executing tests in the containers and capturing the results 
to create reports from. 

3.2 Modeling and Simulation 
This problem will be modeled with test data obtained from Kingland that 

will provides a look at how reports will be structured and how much data can be 
expected to arrive each day. Once the prototype of the project has been created 
it will help facilitate simulation of many different potential final implementations. 
Since our project will utilize a configuration file that will specify how to output and 
format the data we will be able to quickly change the settings for different test 
runs. This will allow us to get data on many different methods of implementation, 
such as what kind of data base we will want to use.  

11 

http://junit.org/
http://site.mockito.org/
http://arquillian.org/


3.3   Process 

3.3.1 Functional Testing 

● Doesn’t use SQL inner-join statements. 
● Utilize only relevant information. 
● Compare current records to previous records as well as other current 

records 
● Validate all fields are present in data 
● Handles various forms of input 
● Update central database after analysis 

3.3.2 Non-Functional Testing 

● Perform inconsistency check in less than 1 hour for daily reports 
● Analyze 100 million or more records at a time 
● Solution should run on Kingland’s system 
● Less than 5% false positives 
● Check performance of each class 

3.4 Implementation Issues and Challenges 
We expect to run into a few issues and challenges while implementing our 

design. First, we need to have hardware that can hold the large amounts of data 
that we will be getting which could be 300GB or larger. This could pose a 
problem when using personal computers that won’t have enough memory to hold 
both the raw data and all of the copied data.  
 

We may also run into problems with our chosen programming language, 
Java. Java is for easy development and ensures that our program can run on any 
system. Java can also be slow and CPU heavy because it runs in the Java virtual 
machine. 

3.5 Results 

4 Closing Material 

12 



4.1 Conclusion 
Our solution for this problem will utilize hashing to speed up table lookups 

and reduce table sizes. This will allow us to speed up the time needed to find 
inconsistencies within the daily reports received by Kingland. We will develop test 
cases for our solution in order to verify its performance and accuracy. Testing of 
other solutions used within the industry will also be done in order to benchmark 
the performance of our solution. This information, along with our solution, will be 
provided to our client so they might determine what solution will best suit their 
needs. 

4.2 References 

4.3 Appendices 

4.3.1 List of Figures 

Figure Number Figure Description 

Figure 2.1 Block diagram of high-level system architecture. 

Figure 2.2 Example XML input tags 

Figure 2.3 Example XML export tag 

Figure 2.4 Example XML elements tag 

Figure 2.5 Configuration Parser UML class diagram 

 

13 


