Data Analytic Tools for
Inconsistency Detection in Large
Data Sets

Design Document

Team 27
Client - Kingland
Advisers - Cai Ying
Team Members/Roles -

Logan Heitz (Team Lead), Camden Voigt (Technical Lead),
CJ Konopka (Communication Lead), TJ Rogers (QA Lead)
Team Email - sdmay18-27 @iastate.edu
Team Website - http://sdmay18-27.sd.ece.iastate.edu/
Revised: October 15, 2017 Version 1



http://sdmay18-27.sd.ece.iastate.edu/

Table of Contents

1 Introduction
1.1 Acknowledgement
1.2 Problem and Project Statement
1.3 Operational Environment
1.4 Intended Users and Uses
1.5 Assumptions and Limitations
1.5.1 Assumptions
1.5.2 Limitations
1.6 Expected End Product and Deliverables

2. Specifications and Analysis
2.1 Specifications
2.1.1 Functional Requirements
2.1.2 Non-Functional Requirements
2.2 Proposed Design
2.2.1 Module Design
Configuration File
Configuration Parser
Raw Data Parser
Inconsistency Checker
Inconsistency Database
2.3 Design Analysis
2.3.1 Specification Fulfilment
2.3.2 Strengths
2.3.3 Weaknesses

3 Testing and Implementation
3.1 Hardware and software
3.2 Modeling and Simulation
3.3 Process
3.3.1 Functional Testing
3.3.2 Non-Functional Testing
3.4 Implementation Issues and Challenges
3.5 Results

4 Closing Material
4.1 Conclusion
4.2 References
4.3 Appendices

© © © © ;o N o O o ;1 O M W W W W WwWwNNDNNNNDDD

RGN
o O ©

. G i N I G
N NDNDNDNDN-=22 A=

_ A =2
W w wnN

—_—



4.3.1 List of Figures 13

1 Introduction

1.1 Acknowledgement

This project would not be possible without the assistance of the faculty
advisor Dr. Cai. Working with Dr. Cai on this project are two graduate students
Guolei Yang and Zehua Li who have provided invaluable in design and
implementation of this project. Finally this project relies on the support of
Kingland Systems for testing data and any other needed materials for
implementation of the project.

1.2 Problem and Project Statement

Kingland processes a large amount of data that it receives from its clients
everyday. This data can be relating to customers, companies, or agreements
between entities. This data is compared to Kingland’s central database in order
to detect inconsistencies and then added to the database. An example of an
inconsistency would be two customer records containing the same social security
number, but different names. This is an issue a social security number should be
unique, as such, detecting such inconsistencies is important to Kingland’s clients.
The database contains over 100 million records, and around 10% of these
records are updated or inserted daily. Due to its size, this comparison takes
several hours to run every day. This time stems from the fact the entire database
cannot be loaded into main memory at one time and the use of SQL join
statements to check for inconsistencies, which is inefficient. Kingland would like
to process 100 million records for inconsistencies in an hour or less. Additionally
this detection must begin with the latest version of the central database after the
reports come in.

1.3 Operational Environment

Our product will operate on the backend of Kingland’s system and will be
automated to detect inconsistencies on incoming reports. Thus, the product will



need to be able to operate with minimal user input and will need to generate
results that can be integrated into Kingland’s existing infrastructure.

1.4 Intended Users and Uses

This project will supply Kingland’s analysts with information on
inconsistencies within their records. The product will be on the backend of
Kingland’s system and its processes will be automated. As such no users will
directly interact with our system on a day to day passes as Kingland will display
the results of our output using their own user interface. However, if Kingland
wishes to improve the system in the future or needs to fix something their
developers will need access to the code and documentation on how it works.
Thus, it is important to provide material for future developers on this project.

1.5 Assumptions and Limitations

1.5.1 Assumptions

e There will be a central database containing more than 100 million
historical reports
The end product shall not require a user interface
The product will only need to detect equality comparisons
The central database will be periodically updated with new data

1.5.2 Limitations

e The program will not be able to be tested on the full sized dataset
e The program cannot be tested with all possible configurations
e Program will be deployed on a machine with less than 64 GB of RAM

1.6 Expected End Product and Deliverables

e System architecture of proprietary solution
o Delivery Date: 01/20/2017

This deliverable will encompass the design of the proprietary
solution that will be developed to solve this problem. This deliverable will
be expanded on in the design document and will involve the overall
system block diagram, UML class diagrams, and class documentation.



e System implementation of proprietary solution
o Delivery Date: 02/20/2017

In addition to the architecture of the proprietary solution an
implementation of the solution will be developed in java. This
implementation will be provided to the client for use in their daily
inconsistency checking.

e Analysis of proprietary solution against industry standard solutions
o Delivery Date: 03/20/2017

There are many standard industry solutions that could be utilized to
solve this problem. Following the implementation of the proprietary
solution the team will test the solution to determine its average runtime
along with the detection rate of inconsistencies. The team will perform
similar analysis of standard industry solutions and provide the findings to
the client so they might evaluate which solution is best for their needs.

e Test cases of solutions
o Delivery Date: 04/02/2017

All test cases that are used for the solution will be provided for the
client so they might verify the solution is valid using the test cases. They
will also be able to utilize the test case if further development is needed for
the project.

e User manual
o Delivery Date: 04/02/2017

A user manual that will discuss how to set up the application and
automate its processes. This will include documentation on how to set up
the configuration file for their needs. It will also include how they can
incorporate the outputs of the application with their user interface.

2. Specifications and Analysis



2.1 Specifications

2.1.1 Functional Requirements

Doesn’t use SQL inner-join statements.

Utilize only relevant information.

Compare current records to previous records as well as other current
records

Validate all fields are present in data

Handles various forms of input

Update central database after analysis

2.1.2 Non-Functional Requirements

Perform inconsistency check in less than 1 hour for daily reports
Analyze 100 million or more records at a time

Solution should run on Kingland’s system

Less than 5% false positives

2.2 Proposed Design

Our proposed solution to this problem is to create a proprietary system
that will utilize hashing to speed up comparisons and to reduce the memory
required by the database. Hashing will improve the speed of comparisons as we
only need to do equality checking. Therefore values can simply be compared
after they are hashed to see if they are equal. This allows us to eliminate the
current use of SQL inner join statements in favor of lookups on indexed columns.
By index the entries in the database by the columns that are important for
equality comparison we can quickly lookup information. Our solution also
reduces the space of the table as we will only need to store the hash values
which can be smaller than the original values and only stores those attributes
that are necessary for inconsistency detection. This reduces the table size and
allow more or all of it to be loaded into main memory at once.

First, we will create a configuration file format. This file will specify how the
we should process the daily reports received. We will then create a parser that
will turn this file into a configuration object. Then we will create a parser which is a
program that accept new data sent to Kingland in either XML, JSON, or some
other format. The parser will run through this data and convert send it into the



database as specified by the configuration object. The parser may also update
the central database which holds all records in their full state. Next, we will run an
inconsistency checker which goes through either the inconsistency database
using SQL lookups on the indexed columns and recognizes conflicts. Once a
conflict has been found the inconsistency checker will go to the central database
and update the correct records with an error code. An overview of the different
modules in used in the project can be found in Figure 2.1.

Figure 2.1: Block diagram of high-level system architecture.

A

Reports

(XML, JSON)

Central
Database

Y

Parser

Inconsistency
Checker

2.2.1 Module Design

This section will present an analysis of the various modules that will be

needed for this project.

r 3

Database

Inconsistency

Config File

Value 1
Value 4
Value 7

file_type: XML
attributes:
<A1 hashed-32 bit>
<A2 not hashed >
output: SQL

~~—_| vaeto

Value 2 . Value 3
Value 5 . Value 6
Value 8 . Value 9
Value 11 . Value 12




Configuration File

The configuration file will be an XML file with three major sections. The
first of these is the input path which will take the path to either a file or a folder.
Figure 2.2 shows how the inputpath should be specified if it is a file or a folder.

Figure 2.2: Example XML input tags
<inputpath>/path/to/file.xml</inputpath>
<inputpath>/path/to/folder</inputpath>

If a file is specified this will be used as the report and if a folder is specified it will
utilize all files within the folder. This allows for easy processing of multiple
reports.

The second section is the exports. This section will specify all the ways to
output the processed data. The output can be either a file type or a database.
Both will require a location to be defined while a database will also require a
driver, username, and password. An example of the exports section from the
configuration file can be seen in figure 2.3.

Figure 2.3: Example XML export tag
<exports>
<export type="database">
<location>http://localhost:3306/database</location>
<dirver>mysqgl</dirver>
<username>myusername</username>
<password>mypassword</password>
</export>
<export type="file">
<location>~/path/to/file.xml</location>
</export>
</exports>

Finally there will be a key element section that will contain information on
all the attributes that we will need from the records contained in the report. This
will include what key the attribute has along with a list of other keys the attribute
may be called that are equivalent. It will include how the attribute should be
outputted which is raw data and/or hash value. Figure 2.4 gives an example of
how the key-elements will be formated in the configuration file.

Figure 2.4: Example XML elements tag
<key-elements>
<element key="ssn">



<output-format>binary</output-format>

<output-format>md5</output-format>

</element>

<element key="name" optional-keys="firstname,lastname">

<output-format>raw</output-format>

<output-format>binary</output-format>

<output-format bits="128">hash</output-format>

</element>

</key-elements>

Configuration Parser

The configuration parser will have several components, the first of which is
the configuration parser class. This class will take in a configuration file and
output a configuration parser for the class by parsing over the XML. The
configuration object will be a separate class that stores the a list of export
objects, a list of element objects, and the input path. The element object will
contain a key value, a list of alias keys, and a list of output format objects. The
output format object will include an output type, the number of bits if hashing is
used, and the hash function that should be used if applicable. The export object
will store the export format, file or database, and the location to export to. If itis a
database the object will also store the driver, username, and password. The UML
diagram in Figure 2.5 shows the different classes and methods that will be
included in this module.

Figure 2.5. Configuration Parser UML class diagram

ConfigParser

+ parse(File): Config
+ parseExports():Export]]

+ parseElements():Elements(]

Config

+ inputPath: String
+ elements: Elements[]

+ exports: Export]]

Use

V

Export

+ type: ExportType

______ Use- - - - -2 + location: String

Element

+ driver: Driver

+ username: String

+ key: String

+ aliasKeys: String[]

+ outputFormats: OutputFormat[]

Output Format

---—Usc--v>

+ type: OutputFormatType
+ bits: int

+ function: String

<<Enumeration==
ExportType

--Use 3> Eie: nt

+ Database: Int

--Use - ==|

<<Enumeration==
QutputFormatType

+ RawData: Int
+ Hashed: Int




Raw Data Parser

The raw data parser will utilize the config object that is created by the
configuration parser in order to parse the records within the daily reports received by
Kingland. The parse will parse through the XML of the input file and utilize the output
formats defined within the element objects in order to determine how the elements
should be outputted. It will than connect to a database or file to output the records.

Inconsistency Checker

The inconsistency checker will compare incoming records against existing
records within the inconsistency database to find inconsistencies. This will be down by
doing equality comparisons on the hashed or raw data values stored in the table that
could have inconsistencies. An example of an inconsistency would be two different
records containing the same social security number, but different names. This would be
found by checking the table for the SSN and then comparing the name of those two
records. The checker will then set a flag within the central database that an
inconsistency with the record was detected.

Inconsistency Database

The inconsistency database is used to store the hashed and raw data
values needed for inconsistency detection. The columns of this database will
correspond to those keys and formats that are specified in the configuration file.

Central Database

The central database will be a database that contains all of the information
from the reports. This database will not utilize hashing to reduce the table size.
This will allow us to reference the real values of elements as needed. When an
inconsistency is detected in the inconsistency database it will flag the
corresponding reports in this database.

2.3 Design Analysis

2.3.1 Specification Fulfilment

The design laid out in above fulfills the specifications laid out in section 2.1
through a variety of methods. The use of a configuration file allows us to handle
various forms of input and to utilize only the relevant information by any given
scan by allowing Kingland to specify those things before the program runs.
Creating a hashed database allows us to get rid of SQL inner-join statements
because we can just do simple equality comparisons. It also lets us do



inconsistency checking in less than one hour because we can do equality checks
very quickly. Also, by using a good hashing function we are able to only have a
few conflicts and therefore only a few false positive marks. Finally, our design
allows ours programs to easily access both the central database and the hashed
database which makes comparing comparing and updating both very easy.

2.3.2 Strengths

This solution has several strengths that make it an appropriate choice for
this problem. The first strength is the ease of implementation. This solution is
built on a few small parts that can be implemented with relative ease. This will
give more time to analyze the proposed solution against the existing solution and
other industry solutions to determine its viability. Another strength of this solution
is it is very modular. The solution is separated out into several distinct parts and
changing one part will not require changes to the entire design. The solution also
allows for us to quickly adapt to changes in the problem statement. The design of
the configuration file allows for us to quickly add in new inconsistencies if needed
and modify the settings of current ones to adapt to any changes we encounter.
Finally, the configuration file also allows us to testing much easier as it can be
utilized to output to multiple different types of database or files so they can be
tested against each other.

2.3.3 Weaknesses

This solution comes with a few tradeoffs including having to duplicate data
into another database and the possibility of not being able to detect every type of
inter-record inconsistency. Both of these shortcomings are small issues. While
usually duplicating data isn’t a great solution, in this case the duplicated data will
actually take up less space than the original and only needs to updated as often
as the original data. Also, not being able to solve every inconsistency isn’'t a huge
issue as even if we can only solve a large amount of these issues it would still
reduce the time needed to run a inconsistency scan significantly.

A more significant issue with this solution is the potential for false positive
detections of inconsistencies. Since the values we compare will be hashed there
is a possibility of collisions. This is a tradeoff of speeding up the system that is
deemed acceptable. As a analyst will need to go through the flagged
inconsistencies in any case it will be a simple matter for them to mark it as a false
positive and move on.

10



The biggest shortcoming of our proposed solution would be that a third
party solution may be able to do this job almost as well. In this case it would
almost be easier for Kingland to use this third party solution as it would have
better support from a full development team, and could be used in some of
Kingland’s other solutions.

Testing and Implementation

3.1 Hardware and software

We will be utilizing several software testing libraries to verify that the
requirements for
our product are met. The libraries we will be using are as follows:

e JUnit- A unit testing framework designed for the Java programming
language.

e Mockito - Allows programmers to create and test double objects (mock
objects) in automated unit tests for the purpose of Test-driven
Development (TDD) or Behaviour Driven Development (BDD).

e Arquillian - Allows developers to easily create automated integration,
functional and acceptance tests for Java. Arquillian also allows the
developer to run tests in the run-time so you don’t have to manage the
run-time from the test(or the build). Arquillian can be used to manage the
lifecycle of the container (or containers), bundling test cases, dependent
classes and resources. It is also capable of deploying archives into
containers and executing tests in the containers and capturing the results
to create reports from.

3.2 Modeling and Simulation

This problem will be modeled with test data obtained from Kingland that
will provides a look at how reports will be structured and how much data can be
expected to arrive each day. Once the prototype of the project has been created
it will help facilitate simulation of many different potential final implementations.
Since our project will utilize a configuration file that will specify how to output and
format the data we will be able to quickly change the settings for different test
runs. This will allow us to get data on many different methods of implementation,
such as what kind of data base we will want to use.

11


http://junit.org/
http://site.mockito.org/
http://arquillian.org/

3.3 Process

3.3.1 Functional Testing

Doesn’t use SQL inner-join statements.

Utilize only relevant information.

Compare current records to previous records as well as other current
records

Validate all fields are present in data

Handles various forms of input

Update central database after analysis

3.3.2 Non-Functional Testing

Perform inconsistency check in less than 1 hour for daily reports
Analyze 100 million or more records at a time

Solution should run on Kingland’s system

Less than 5% false positives

Check performance of each class

3.4 Implementation Issues and Challenges

We expect to run into a few issues and challenges while implementing our
design. First, we need to have hardware that can hold the large amounts of data
that we will be getting which could be 300GB or larger. This could pose a
problem when using personal computers that won’t have enough memory to hold
both the raw data and all of the copied data.

We may also run into problems with our chosen programming language,
Java. Java is for easy development and ensures that our program can run on any

system. Java can also be slow and CPU heavy because it runs in the Java virtual
machine.

3.5 Results

4 Closing Material

12



4.1 Conclusion

Our solution for this problem will utilize hashing to speed up table lookups
and reduce table sizes. This will allow us to speed up the time needed to find
inconsistencies within the daily reports received by Kingland. We will develop test
cases for our solution in order to verify its performance and accuracy. Testing of
other solutions used within the industry will also be done in order to benchmark
the performance of our solution. This information, along with our solution, will be
provided to our client so they might determine what solution will best suit their

needs.

4.2 References

4.3 Appendices

4.3.1 List of Figures

Figure Number

Figure Description

Figure 2.1 Block diagram of high-level system architecture.
Figure 2.2 Example XML input tags

Figure 2.3 Example XML export tag

Figure 2.4 Example XML elements tag

Figure 2.5 Configuration Parser UML class diagram

13




