Data Analytic Tools for
Inconsistency Detection in Large
Data Sets

Design Document

Team 27
Client - Kingland
Advisers - Cai Ying
Team Members/Roles -

Logan Heitz (Team Lead), Camden Voigt (Technical Lead),
CJ Konopka (Communication Lead), TJ Rogers (QA Lead)
Team Email - sdmay18-27 @iastate.edu
Team Website - http://sdmay18-27.sd.ece.iastate.edu/
Revised: December 4, 2017 Version 2

http://sdmay18-27.sd.ece.iastate.edu/

Table of Contents

1 Introduction
1.1 Acknowledgement
1.2 Problem and Project Statement
1.3 Operational Environment
1.5 Assumptions and Limitations
1.5.1 Assumptions
1.5.2 Limitations
1.6 Expected End Product and Deliverables

2. Specifications and Analysis
2.1 Specifications
2.1.1 Functional Requirements
2.1.2 Non-Functional Requirements
2.2 Proposed Design
2.2.1 Module Design
Data Configuration File
Data Configuration Parser
Raw Data Parser
Inconsistency Configuration File
Matching Configuration Parser
Inconsistency Checker
Exporter
Inconsistency Database
Inconsistency Report
2.3 Design Analysis
2.3.1 Specification Fulfilment
2.3.2 Strengths
2.3.3 Weaknesses

3 Testing and Implementation
3.1 Hardware and software
3.2 Modeling and Simulation
3.3 Process
3.3.1 Functional Testing
3.3.2 Non-Functional Testing
3.4 Implementation Issues and Challenges
3.5 Implementation
3.6 Results

o OO oo o O » A DA DA P OWOWWW®

L e N U Qe I G
WM NOMNMNNNON a2 L oo

L N e | TS S
o oo oo P w®

4 Closing Material
4.1 Conclusion
4.2 References
4.3 Appendices
4.3.1 List of Figures
4.3.2 List of Tables

17
17
17
19
19
19

1 Introduction

1.1 Acknowledgement

This project would not be possible without the assistance of the faculty
advisor Dr. Cai. Working with Dr. Cai on this project are two graduate students
Guolei Yang and Zehua Li who have provided invaluable in design and
implementation of this project. Finally this project relies on the support of
Kingland Systems for testing data and any other needed materials for
implementation of the project.

1.2 Problem and Project Statement

Kingland processes a large amount of data that it receives from its clients
everyday. This data can be relating to customers, companies, or agreements
between entities. This data is compared to a central inconsistency database in
order to detect inconsistencies and then added to the database. An example of
an inconsistency would be two customer records containing the same social
security number, but different names. This is an issue, since a social security
number should be unique. The database contains over 100 million records, and
around 10% of these records are updated or inserted daily. Due to its size, this
comparison takes several hours to run every day. This time stems from the fact
the entire database cannot be loaded into main memory at one time and the use
of SQL inner join statements to check for inconsistencies, which is inefficient.
Kingland would like to process 100 million records for inconsistencies in an hour
or less. Additionally this detection must begin with the latest version of the
inconsistency database after the reports come in.

1.3 Operational Environment

Our product will operate on the backend of Kingland’s system and will be
automated to detect inconsistencies on incoming reports. Thus, the product will
need to be able to operate with minimal user input and will need to generate
results that can be integrated into Kingland’s existing infrastructure.

1.4 Intended Users and Uses

This project will supply Kingland’s analysts with information on
inconsistencies within their records. The product will be on the backend of
Kingland’s system and its processes will be automated. As such no users will
directly interact with our system on a day to day passes as Kingland will display
the results of our output using their own user interface. However, if Kingland
wishes to improve the system in the future or needs to fix something their
developers will need access to the code and documentation on how it works.
Thus, it is important to provide material for future developers on this project.

1.5 Assumptions and Limitations

1.5.1 Assumptions

e There will be an inconsistency database containing more than 100 million
historical reports
The end product shall not require a user interface
The product will only need to detect equality comparisons

e The inconsistency database will be periodically updated with new data

1.5.2 Limitations

e The program will not be able to be tested on the full sized dataset
e The program cannot be tested with all possible configurations
e Program will be deployed on a machine with less than 64 GB of RAM

1.6 Expected End Product and Deliverables

e System architecture of proprietary solution
o Delivery Date: 01/20/2018
o This deliverable will encompass the design of the proprietary
solution that will be developed to solve this problem. This
deliverable will be expanded on in the design document and will
involve the overall system block diagram, UML class diagrams, and
class documentation.

e System implementation of proprietary solution
o Delivery Date: 02/20/2018
o In addition to the architecture of the proprietary solution an
implementation of the solution will be developed in java. This

implementation will be provided to the client for use in their daily
inconsistency checking.

e Analysis of proprietary solution against industry standard solutions

o Delivery Date: 03/20/2018

o There are many standard industry solutions that could be utilized to
solve this problem. Following the implementation of the proprietary
solution the team will test the solution to determine its average
runtime along with the detection rate of inconsistencies. The team
will perform similar analysis of standard industry solutions and
provide the findings to the client so they might evaluate which
solution is best for their needs.

e Test cases of solutions
o Delivery Date: 04/02/2018
o All test cases that are used for the solution will be provided for the
client so they might verify the solution is valid using the test cases.
They will also be able to utilize the test case if further development
is needed for the project.

e User manual

o Delivery Date: 04/02/2018

o A user manual that will discuss how to set up the application and
automate its processes. This will include documentation on how to
set up the configuration file for their needs. It will also include how
they can incorporate the outputs of the application with their user
interface.

2. Specifications and Analysis

2.1 Specifications

2.1.1 Functional Requirements

e Solution must not use SQL inner-join statements
o Kingland’s current solution to this problem is to use SQL inner-join
statements which can take a long time. Thus, our solution should
eliminate these statements to save time.

Solution must utilize only relevant information
o Our solution needs to run using only the small amount of fields
needed to actually detect an inconsistency. This will reduce
memory utilize and speed up the detection.
Solution must compare current records to previous records as well as
other current records
o Our solution needs to be able to compare inconsistencies between
records found in new reports and also between new reports and
previously saved records.
Solution must validate all fields are present in data
o Our solution needs to ensure that all required fields are in each
received record.
Solution must handle various forms of input
o Our solution should be able to handle data input in multiple formats
including XML and JSON.
Solution must update inconsistency database after analysis
o Our solution should update an inconsistency database so that
future checks will work with the latest version of the database.

2.1.2 Non-Functional Requirements

2.2

Solution must perform inconsistency check in less than 1 hour for daily
reports
o Our solution should be able to detect and report all inconsistencies
in a new report in an hour or less.
Solution must be able to analyze 100 million or more records at a time
o New reports can have 100 million records or more. Therefore, our
solution should be able to handle this size of input.
Solution must run on Kingland’s system
o Our solution is a proprietary solution for Kingland and therefore
must be able to run on their hardware.
Less than 5% false positives
o Our solution should have less than 5% false positive
inconsistencies to reduce the time spent fixing these.

Proposed Design

Our proposed solution to this problem is to create a proprietary system

that will utilize hashing to speed up comparisons and to reduce the memory
required by the database. Hashing will improve the speed of comparisons since

we only need to do equality checking. Therefore, values can simply be compared
after they are hashed to see if they are equal to the value in the database. This
allows us to eliminate the current use of SQL inner join statements, which are
time consuming, in favor of lookups on indexed columns. Indexing the entries in
the database by the columns that are important for equality comparison allow us
to quickly lookup information. Our solution also reduces the space of the table as
we will only need to store the hash values which can be smaller than the original
values and only stores attributes necessary for inconsistency detection. This
reduces the table size and will allow more or all of it to be loaded into main
memory at once.

First, we will create a configuration file format. This file will specify how we
process the received daily reports. We will then create a configuration parser that
will turn this file into a configuration object. The configuration object will be
utilized by the raw data parser to accept the daily reports that Kingland receives.
As each item in a report is parsed it will be sent to the inconsistency matcher. By
sending the parsed data one element at a time we will not have to bring all of
them into main memory at once, which will improve the performance of our
program. The inconsistency matcher will check the element against the
inconsistency database. If there is an inconsistency, then the element will be sent
to an inconsistency report. Otherwise it will be sent to the exporter which will add
it to the inconsistency database. An overview of the different modules used in the
project can be found in Figure 2.1.

AN

Reports

Data Configuration
Parser

(XML, JSON)

Y

Raw Data Parser

Inconsistency
Database

L4

Inconsistency
Checker

F Y

Matching

Configuration Parser ||

Exporter

Inconsistency
Report

Figure 2.1: Block diagram of high-level system architecture.

2.2.1 Module Design

This section will present an analysis of the various modules that will be
needed for this project.

file_type: XML

attributes:
<A1 hashed-32 bit>
<A2 not hashed >

/culput SaL

Matching Config
File

Data Configuration File

The configuration file will be an XML file with three major sections. The
first of these is the input path which will take the path to either a file or a folder.
Figure 2.2 shows how the inputpath should be specified if it is a file or a folder.

<inputpath>/path/to/file.xml</inputpath>
<inputpath>/path/to/folder</inputpath>
Figure 2.2: Example XML input tags

If a file is specified this will be used as the report and if a folder is specified it will
utilize all files within the folder. This allows for easy processing of multiple
reports.

The second section is the exports. This section will specify all the ways to
output the processed data. The output can be either a file type or a database.
Both will require a location to be defined while a database will also require a
driver, username, and password. An example of the exports section from the
configuration file can be seen in Figure 2.3.

<exports>
<export type="database">
<location>http://localhost:3306/database</location>
<driver>mysqgl</driver>
<username>myusername</username>
<password>mypassword</password>
</export>
<export type="file">
<location>~/path/to/file.xml</location>
</export>
</exports>

Figure 2.3: Example XML export tag

Finally, there will be a key element section that will contain information on
all the attributes that we will need from the records contained in the report. This
will include what key the attribute has along with a list of other keys the attribute
may be called that are equivalent. It will include how the attribute should be
outputted which is raw data and/or hash value. Figure 2.4 gives an example of
how the key-elements will be formated in the configuration file.

<key-elements>
<element key="ssn">

<output-format>binary</output-format>

<output-format>md5</output-format>

</element>

<element key="name" optional-keys="firstname,lastname">

<output-format>raw</output-format>

<output-format>binary</output-format>

<output-format bits="128">hash</output-format>

</element>

</key-elements>

Figure 2.4: Example XML elements tag

Data Configuration Parser

The configuration parser will have several components, the first of which is
the configuration parser class. This class will take in a data configuration file and
output a configuration object for the class by parsing over the XML. The
configuration object will be a separate class that stores the a list of export
objects, a list of element objects, and the input path. An element object will
contain a key value, a list of alias keys, and a list of output format objects. The
output format object will include an output type, the number of bits if hashing is
used, and the hash function that should be used if applicable. An export object
will store the export format, file or database, and the location to export to. If itis a
database, the object will also store the driver, the username, and the password.
The UML diagram in Figure 2.5 shows the different classes and methods that will
be included in this module.

ConfigParser

+ parse(File): Config
+ parseExports():Export]]

+ parseElements():Elements(]

Config

+ inputPath: String
+ elements: Elements[]

+ exports: Export(]

Use

V

Export

+ type: ExportType

______ Use-----=»{ + location: String

Element

+ driver: Driver

+ username: String

+ key: String

+ aliasKeys: String[]

+ outputFormats: OutputFormat[]

Output Format

---—Usc--v>

+ type: OutputFormatType
+ bits: int

+ function: String

Figure 2.5: Configuration Parser UML class diagram

<<Enumeration==
ExportType

--Use 3 Eie: nt

+ Database: Int

--Use - ==|

<<Enumeration==>
QutputFormatType

+ RawData: Int
+ Hashed: Int

10

Raw Data Parser

The raw data parser will utilize the configuration object that is created by the
configuration parser in order to parse the records within the daily reports received by
Kingland. The parser will parse through the XML of the input file and utilize the output
formats defined within the element objects in order to determine how the elements
should be outputted. As it parses through the records it will send them each to the
inconsistency checker one at a time.

Inconsistency Configuration File

The inconsistency configuration file will be used to specify what inconsistency the
program should detect. This will give a list of inconsistency in XML and will have several
attributes for each inconsistency. The inconsistency status is the status code associated
with that inconsistency. The index is the value that should be used to pull records from
the database as the corresponding columns will be indexed in the table. The compare
attribute is the value that needs to be compared.

<inconsistencies>
<inconsistency status=”101" index="TID” compare="NAME”>
<inconsistency status=7201" index="SSN” compare="NAME"”>
</inconsistencies>
Figure 2.6: Example inconsistencies XML

Matching Configuration Parser

This module will function similar to the data configuration parser and will parse
over a matching configuration file to get the information it contains. It will create an
inconsistency object for each inconsistency listed in the file and the list of these
inconsistencies will be given to the inconsistency checker.

Inconsistency Checker

The inconsistency checker will compare incoming records against existing
records within the inconsistency database to find inconsistencies. This will be down by
utilizing the information in the inconsistency configuration file. When the checker gets a
new record it will go through each defined inconsistency and search in the database for
records with the same index value as the current record. It will then compare the
compare attribute with that of the incoming record and verify equality. If they are not
equal, then the record will be added to the inconsistency report with the status code
defined for that inconsistency and the conflicting record in the database. Otherwise the
record will be sent to the exporter to be inserted into the database.

11

Exporter

The exporter will accept records from the inconsistency checker that has
been found to be consistent with existing data. It will then either update the
record in the database or insert it if it is a new record.

Inconsistency Database

The inconsistency database is used to store the hashed or raw data
values, as needed, for inconsistency detection. The columns of this database will
correspond to the keys and formats that are specified in the configuration file.

Inconsistency Report

The inconsistency report will be a text file containing the records that were found
to be inconsistent, the status code of the inconsistency, and the records that they
conflicted with in the database.

2.3 Design Analysis

2.3.1 Specification Fulfilment

The design laid out in above fulfills the specifications laid out in section 2.1
through a variety of methods. The use of a configuration file allows us to handle
various forms of input and to utilize only the relevant information by any given
scan by allowing Kingland to specify those things before the program runs.
Creating a hashed database allows us to get rid of SQL inner-join statements
because we can just do simple equality comparisons. It also lets us do
inconsistency checking in less than one hour because we can do equality checks
very quickly. Also, by using a good hashing function we are able to only have a
few conflicts and therefore only a few false positive marks. Finally, our design
allows ours programs to easily access the inconsistency database used in
inconsistency detection.

2.3.2 Strengths

This solution has several strengths that make it an appropriate choice for
this problem. The first strength is the ease of implementation. This solution is
built on a few small parts that can be implemented with relative ease. This will
give more time to analyze the proposed solution against the existing solution and
other industry solutions to determine its viability. Another strength of this solution

12

is it is very modular. The solution is separated out into several distinct parts and
changing one part will not require changes to the entire design. The solution also
allows for us to quickly adapt to changes in the problem statement. The design of
the configuration file allows for us to quickly add in new inconsistencies if needed
and modify the settings of current ones to adapt to any changes we encounter.
Finally, the configuration file also allows us to testing much easier as it can be
utilized to output to multiple different types of database or files so they can be
tested against each other.

2.3.3 Weaknesses

This solution comes with a few tradeoffs including having to duplicate data
into another database and the possibility of not being able to detect every type of
inter-record inconsistency. Both of these shortcomings are small issues. While
usually duplicating data isn’t a great solution, in this case the duplicated data will
actually take up less space than the original and only needs to updated as often
as the original data. Also, not being able to solve every inconsistency isn’'t a huge
issue as even if we can only solve a large amount of these issues it would still
reduce the time needed to run a inconsistency scan significantly.

A more significant issue with this solution is the potential for false positive
detections of inconsistencies. Since the values we compare will be hashed there
is a possibility of collisions. This is a tradeoff of speeding up the system that is
deemed acceptable. As a analyst will need to go through the flagged
inconsistencies in any case it will be a simple matter for them to mark it as a false
positive and move on.

The biggest shortcoming of our proposed solution would be that a third
party solution may be able to do this job almost as well. In this case it would
almost be easier for Kingland to use this third party solution as it would have

better support from a full development team, and could be used in some of
Kingland'’s other solutions.

Testing and Implementation

3.1 Hardware and software

13

We will be utilizing several software testing libraries to verify that the
requirements for
our product are met. The libraries we will be using are as follows:
e JUnit- A unit testing framework designed for the Java programming
language.
e Mockito - Allows programmers to create and test double objects (mock
objects) in automated unit tests for the purpose of Test-driven
Development (TDD) or Behaviour Driven Development (BDD).

3.2 Modeling and Simulation

This problem will be modeled with test data obtained from Kingland that
will provides a look at how reports will be structured and how much data can be
expected to arrive each day. Once the prototype of the project has been created
it will help facilitate simulation of many different potential final implementations.
Since our project will utilize a configuration file that will specify how to output and
format the data we will be able to quickly change the settings for different test
runs. This will allow us to get data on many different methods of implementation,
such as what kind of data base we will want to use.

3.3 Process

3.3.1 Functional Testing

Requirement

Validation/Acceptance test

Solution must not use SQL
inner-join statements

A Style Checker will be used to ensure that SQL
inner-join statements do not appear in the
production code.

Solution must utilize only
relevant information

The size of the Inconsistency database created by
this solution shall be compared to Kingland’s
central database to determine if this requirement is
satisfied by our solution.

Solution must compare current
records to previous records as
well as other current records

Using Kingland’s current solution as an Oracle to
determine if our solution detects the same
inconsistencies.

Solution must validate all fields
are present in data

A unit test will be used to confirm that any missing
fields in the raw data are flagged as such.

14

http://junit.org/
http://site.mockito.org/

Solution must handle various Unit tests will be used with multiple forms of sample
forms of input data to determine how well the parser can handle
different configurations of input data.

Solution must update Kingland’s main database will be checked to verify
inconsistency database after that it has been updated with the information that
analysis has been verified as consistent.

Table 3.1: Validation tests for the Functional requirements

3.3.2 Non-Functional Testing

Requirement Validation/Acceptance test

Solution must perform inconsistency We will compare performance log files

check in less than 1 hour for daily reports | gathered in Log4J to determine the
success of this.

Solution must be able to analyze 100 This will be validated using actual data
million or more records at a time Kingland receives on a daily basis and
success will be determined based on
whether or not our solution can perform
faster and with the same accuracy as
Kingland’s system.

Solution must run on Kingland’s system We will work with Kingland to deploy our
solution on their machine to test its
performance. We will also attempt to test
on machines with similar specifications to

Kingland’s.
Solution reports less than 5% false This will be tested by processing
positives inconsistency files and determining an

average number of false positives.

Table 3.2: Validation tests for Non-Functional requirements

3.4 Implementation Issues and Challenges

We expect to run into a few issues and challenges while implementing our
design. First, we need to have hardware that can hold the large amounts of data
that we will be getting which could be 100GB or larger. This could pose a
problem when using personal computers that won’t have enough memory to hold
both the raw data and all of the copied data. To solve this challenge we have set
up a dedicated server, with the assistance of our advisor, in order to do full scale

15

testing. Modular testing can still be conducted on personal machines on
segments of the test data.

We may also run into problems with our chosen programming language,
Java. Java is for easy development and ensures that our program can run on any
system. Java can also be slow and CPU heavy because it runs in the Java virtual
machine. We believe java is worth the risk at this point in time but we may
change programming languages if our early prototypes are too slow.

Our implementation has to be heavily adaptable. It is very possible that
the input to a solution may be in various file formats and with differing
organization. Additionally, the inconsistencies we could potentially check for are
numerous and dynamic. To mitigate these issues we have created configuration
files and parsers. That way the end user will not have to edit the actual code at
all, only the configuration files, to get different functionality.

3.5 Implementation

The configuration files have been completely implemented and allow
users to specify the file location of an XML file or a directory containing many
XML files along with the data the user would like to check for inconsistencies and
a location that the evaluated data should be exported to. The data that is parsed
from the XML files is currently very dependent upon the format of the XML file
and may cause challenges if Kingland receives XML files with formats that vary
drastically because of the way the key-value pairs are stored. Log4J was also
added to monitor the time it takes to parse the XML data, validate it and then
export it. After The files have been parsed, the data is can be stored in either a
database or a text file as the parsed data, or as a hashed form of it in order to cut
down on the size of the data.

3.6 Results

Currently, the project is still in the prototyping stage. Each part has been
built out and the project can currently run in a development environment with a
specific setup and data, but the project as a whole may still be subject to many
changes. This instability is making it hard to use our full testing plan on the
project so far. Even so, we have been able to use Log4J (our logging library) to
start testing how long the project will take to run. The preliminary results of these
timing tests show that on a personal machine comparing 2 GB of data to a

16

database with 550,000 entries our project about takes about 3 minutes to
complete and finds 3847 inconsistencies.This look good for our initial prototype,
but we think there are still improvements to be made. Especially in the time spent
updating the database.

4 Closing Material

4.1 Conclusion

Our solution for this problem will utilize hashing to speed up table lookups
and reduce table sizes. This will allow us to speed up the time needed to find
inconsistencies within the daily reports received by Kingland. We will develop test
cases for our solution in order to verify its performance and accuracy. Testing of
other solutions used within the industry will also be done in order to benchmark
the performance of our solution. This information, along with our solution, will be
provided to our client so they might determine what solution will best suit their
needs.

4.2 References

Haufler, Andreas. “Conveniently Processing Large XML Files with Java.”
Dzone.com, 10 Jan. 2012,
dzone.com/articles/conveniently-processing-large.

This article explains how using SAX as an alternative to a DOM parser
reduces the amount of memory needed to handle large files because SAX
invokes callbacks to detect XML tokens instead of loading the entire file
into memory. It also shows example uses of the SAX parser.

Murnane, Tafline. “ISO/IEC/IEEE 29119 Software Testing.” ISO/IEC/IEEE 29119
Software Testing Standard, softwaretestingstandard.org, 24 Oct. 2013,
www.softwaretestingstandard.org/part4.php.

ISO/IEC/IEEE standards for specification-based, structure-based and
experience-based testing techniques. Along with outlining a variety of
testing technique this document outlines some standard methods used to
derive test cases that have been approved and adopted as international
standards for software testing.

17

http://www.softwaretestingstandard.org/part4.php

Smrcka, Ales I., Ph.D. "TEST PLAN OUTLINE (IEEE 829 Format)." IEEE 829 -
Standard for Test Documentation Overview. Brno University of
Technology, n.d. Web.

An outline for a test plan document that pinpoints important areas to
address when creating a test plan. The template also provides a
description of each area so that the reader knows exactly what purpose
that area of the test plan addresses.

Staveley, Alex. “JAXB, SAX, DOM Performance.” Dzone.com, 31 Dec. 2011,
dzone.com/articles/jaxb-sax-dom-performance.

This article analyzes a performance evaluation of a JAXB, SAX and DOM
XML parser. It provides the source code the tester used to perform the
tests as well as the various times required for each xml parser with various
sizes of data. For the largest data set, the SAX parser performed the
parsing operations in the least amount of time, and has a much smaller
memory usage than that of a DOM parser. The drawback to the SAX
parser was the amount of developer attention needed to calibrate the
parser to perform the desired operations.

Sug, Hyontai. "An Efficient Method of Data Inconsistency Check for Very Large
Relations." S International Journal of Computer Science and Network
Security 7.10 (2007): 166-69. Web. 22 Sept. 2017.

This defines a strategy to help detect inconsistencies in databases based
on functional dependencies between attributes in a relation and apply an
association rule algorithm based on the attribute sets. It is also assumed
that the database under observation is not designed with much
consideration about normalization.

Zhang, Du. (2013). Inconsistencies in big data. Proceedings of the 12th IEEE
International Conference on Cognitive Informatics and Cognitive
Computing, ICCI*CC 2013. 61-67. 10.1109/ICCI-CC.2013.6622226.

This article examines four types of inconsistencies in big data - temporal,
spatial, text and functional inconsistencies - and how categorizing the
inconsistencies in data can help to improve the quality of big data
analysis.

18

4.3 Appendices

4.3.1 List of Figures

Figure Number

Figure Description

Figure 2.1 Block diagram of high-level system architecture.
Figure 2.2 Example XML input tags

Figure 2.3 Example XML export tag

Figure 2.4 Example XML elements tag

Figure 2.5 Configuration Parser UML class diagram

Figure 2.6 Example inconsistencies XML

4.3.2 List of Tables

Table Number

Table Description

Table 3.1

Validation tests for Functional requirements

Table 3.2

Validation tests for Non-Functional requirements

19

