

Data Analytic Tools for
Inconsistency Detection in Large

Data Sets
Final Report

Team 27
Client - Kingland

Advisers - Cai Ying
Team Members/Roles -

Logan Heitz (Team Lead), Camden Voigt (Technical Lead),
CJ Konopka (Communication Lead), TJ Rogers (QA Lead)

Team Email - sdmay18-27@iastate.edu
Team Website - http://sdmay18-27.sd.ece.iastate.edu/

Revised: April 22, 2017 Version 1

http://sdmay18-27.sd.ece.iastate.edu/

Table of Contents
1 Introduction 3

1.1 Acknowledgement 3
1.2 Problem and Project Statement 3
1.3 Intended Users and Uses 3

2. Project Design 4
2.1 Specifications 4

2.1.1 Functional Requirements 4
2.1.2 Non-Functional Requirements 4
2.1.3 Constraints 4

2.2 Design Overview 4
2.2.1 Module Design 6

2.3 Design Analysis 7
2.3.1 Specification Fulfilment 7
2.3.2 Strengths 7
2.3.3 Weaknesses 7

3 Implementation 8
3.1 Implementation Details 8
3.2 Class Diagram 11
3.3 Dependencies 11

4 Testing Process and Results 12
4.1 Process 12

4.1.1 Test Driven Development 12
4.1.2 Unit Testing 12
4.1.3 Integration Testing 13

4.2 Testing Criteria 13
4.2.1 Functional Criteria 14
4.2.2 Non-Functional Criteria 14

4.3 Results 15

5 Appendix 15
5.1 Operation Manual 15

5.1.1 Obtaining Source Code 15
5.1.2 Project Configuration 16
5.1.3 Data Configuration File 16
5.1.4 Inconsistency Configuration File 18
5.1.5 Building the project 19

1

5.1.6 Running the project 19
5.2 Alternative Designs 20
5.3 Related Works 21
5.4 Figures and Tables 22

5.4.1 List of Figures 22
5.4.2 List of Tables 23

5.5 References 23

2

1 Introduction

1.1 Acknowledgement
This project would not be possible without the assistance of the faculty advisor
Dr. Cai. Working with Dr. Cai on this project are two graduate students Guolei
Yang and Zehua Li who have been invaluable in design and implementation of
this project. Finally, this project relies on the support of Kingland Systems for
testing data and any other needed materials for implementation of the project.

1.2 Problem and Project Statement
Kingland processes a large amount of data that it receives from its clients
everyday. This data can relate to customers, companies, or agreements between
entities. This data is compared to a central database in order to detect
inconsistencies. An example of an inconsistency would be two customer records
containing the same social security number, but different names. This is an
issue, since a social security number should be unique. The database contains
over 100 million records, and around 10% of these records are updated or
inserted daily. Due to its size, this comparison takes about 24 hours to run using
Kingland’s current solution. This time stems from the fact the entire database
cannot be loaded into main memory at one time and the use of SQL inner join
statements to check for inconsistencies, which is inefficient. Kingland would like
to process 500,000 records for inconsistencies against the central database
faster than the current solution, preferably in under an hour.

1.3 Intended Users and Uses
This project will supply Kingland’s analysts with information on inconsistencies
within their records. The product will be on the backend of Kingland’s system and
its processes will be automated. As such, no users will directly interact with our
system on a day to day basis as Kingland will display the results of our output
using their own user interface.

3

2. Project Design

2.1 Specifications

2.1.1 Functional Requirements
● Solution must not use SQL inner-join statements
● Solution must utilize only relevant information
● Solution must compare records from an incoming report against the

central database as well as other records in the same report
● Solution must update inconsistency database after analysis

2.1.2 Non-Functional Requirements
● Solution must perform inconsistency check faster than current solution

○ Preferably in less than 1 hour.
● Solution must be able to analyze 100 million or more records at a time
● Solution must find all inconsistencies from an incoming report

2.1.3 Constraints
● Solution must work with MySQL
● Solution must run on AWS
● Must handle XML input

2.2 Design Overview
Our solution to Kingland’s problem is to remove the heavy dependency on SQL
and introduce parallelization to improve performance. Currently Kingland’s
system is heavily reliant on SQL to make large and complex queries to the
database. By adding in more preprocessing to the system we are able to simplify
the SQL queries that we make and spend less time getting information from the
database. We also utilize threading to make multiple SQL queries at the same
time and get further performance gains.

The design also incorporates a lot of configurability, so that Kingland can make
changes in the future. This is achieved through the use of two configuration files,
the Data Configuration File and the Inconsistency Configuration File. The Data

4

Configuration File allows for changes to what fields should be kept for
consistency checking. While the Inconsistency Configuration File allows for
Kingland to change what Inconsistencies are checked and add new ones. This
will allow for Kingland to setup different configurations of the program for different
types of incoming reports.

Our design utilizes an event driven XML parser as opposed to a tree model XML
parser for the incoming XML reports. This allows us to parse out one record at a
time and conserve memory. As each item is parsed it will be immediately
checked for inconsistencies, once it is no longer being checked it is no longer
needed in memory and the next record can be loaded. When the records are
being checked for inconsistencies each inconsistency will be checked in its own
thread to speed up the check. An overview of the different modules used in the
project can be found in Figure 2.1.

Figure 2.1: Block diagram of high-level system architecture

5

2.2.1 Module Design
This section will go over the basic design of the different modules in the project
and what functionality they will provide for the project.

Data Configuration
The purpose of the Data Configuration module is to allow the user to give
information needed for a run of the solution via a configuration file that the
program parses at run time. This allows the user to specify different
configurations each time the program is run. The options users may include in
their configuration file are the input location of raw data files, database
information, and key element specification.

Raw Data Parser
The Raw Data Parser allows the program to parse over raw data files containing
records. The parsed records are saved to the system based on the configuration
the user has specified. Each record is sent to the Inconsistency Checker to
determine if it conflicts with any existing records.

Inconsistency Parser
This module allows the user to provide a configuration file that outlines the
inconsistencies that need to be detected. The parser then parses the file and
creates a list of inconsistencies for the Inconsistency Checker to use.

Inconsistency Checker
The Inconsistency Checker provides the ability to compare a record against
those already in storage and detect inconsistencies. Checking of the
inconsistencies is done in separate threads, one for each inconsistency provided
by the user. These threads are given to the Threader to be executed. The results
are then compiled and any detected inconsistencies are sent to the Storage
module.

Threader
The Threader module accepts threads from the Inconsistency Checker and
executes each of these threads in parallel. The threads use the Storage module
to make SQL queries to detect inconsistencies.

6

Storage
The Storage module interacts with the storage medium specified by the user in
configuration file. It provides the ability to make queries to detect an
inconsistency. It also provides an interface that allows for saving of records and
inconsistencies to the storage medium.

2.3 Design Analysis

2.3.1 Specification Fulfilment
The design laid out in section 2.2 fulfills the specifications laid out in section 2.1
through a variety of methods. The use of a configuration file allows us to handle
various forms of input and to utilize only the relevant information for any given
scan by allowing Kingland to specify those items before the program runs. By
making smaller SQL queries we are able to reduce the time the queries take,
which leads to improved performance. Parallelization provides further
performance gains over the existing solution.

2.3.2 Strengths
Our solution has several strengths that make it an appropriate choice for
Kingland’s problem. The first strength is the ease of implementation. This
solution is built on a few small parts that can be implemented with relative ease.
Another strength of this solution is its modularity. The solution is separated out
into several distinct parts and changes to one part will not require changes to the
entire design. The design of the configuration file allows us to quickly add in new
inconsistencies if needed and modify the settings of current ones to adapt to any
changes we encounter. Finally, parallelization is a strength of our solution. The
parallelization takes advantage of our smaller SQL queries to complete several
queries at a time, providing improved performance.

2.3.3 Weaknesses
The biggest shortcoming of our solution is that a third party solution may be able
to do this job almost as well. In this case it may be easier for Kingland to use this
third party solution as it would have better support from a full development team,
and could be used in some of Kingland’s other solutions. The benefit of our
solution over this is that it has been developed specifically for Kingland’s needs
and they will be able to modify it if needed in the future. In addition, it will likely
cost Kingland less to use in the long run than a third party solutions.

7

3 Implementation

3.1 Implementation Details
Our solution has been implemented and works as outlined within the design
section. It is able to parse and detect inconsistencies from XML files by querying
a MySQL database. Below are implementation details for the different modules
within the project.

Data Configuration
The data configuration file will be an XML file with three major sections. The first
of these is the input path which will take the path to either a file or a folder. Figure
2.2 shows how the input path should be specified if it is a file or a folder.

<inputpath>/path/to/file.xml</inputpath>
<inputpath>/path/to/folder</inputpath>

Figure 3.1: Example XML input tags

If a file is specified it will be used as the report and if a folder is specified it will
utilize all files within the folder. This allows multiple reports to be easily
processed.

The second section is the storage. This section specifies information on the
storage used by the application. Currently only MySQL databases are supported.
An example of the storage section from the configuration file can be seen in
Figure 2.3.

<storage-list>

<storage type="database">
<location>http://localhost:3306/database</location>
<driver>mysql</driver>
<username>myusername</username>
<password>mypassword</password>

</storage>

</storage-list>

Figure 3.2: Example XML storage tags

8

Finally, there is a key element section that contains information on all the
attributes that we will need from the records contained in the report. This includes
the key for the attribute, a list of alternative keys that may be seen, and finally
whether the attribute should be used as an index. The indexing allows us to
have quicker lookup on fields that are used for inconsistency lookup. Figure 2.4
gives an example of how the key-elements are formatted in the configuration file.

<key-elements>

<element key="ssn" index=’true’/>
<element key="name" optional-keys="firstname,lastname" index='false'/>

</key-elements>

Figure 3.3: Example XML element tags

The parser will convert the XML configuration files into java objects. These
configuration objects are then used in the rest of the program to determine user
settings. This module uses the Java XML DOM parser as the XML file being
parsed is small, so it is faster to load the whole tree into memory at once and
then parse it.

Raw Data Parser
The Raw Data Parser has been implemented using the SAX parser for XML. This
parser was chosen because it is event based instead of tree based. This means
that the whole XML file is not read into memory at one time, which is better when
working with large XML files. This also allows us to parse a single element at a
time and have it sent to the Inconsistency Checker to be checked and then
remove that element from memory before reading in the next element.

Inconsistency Parser
The inconsistency configuration file is used to specify what inconsistency the
program should detect. This is an XML file that contains a list of inconsistencies
that should be checked. The inconsistency status is the status code associated
with that inconsistency. The index is the value that should be used to pull records
from the database as the corresponding columns will be indexed in the table. The
index value should correspond to keys in the data configuration file that have a
true value for index. The compare attribute is the value that needs to be
compared in checking.

<inconsistencies>

<inconsistency type="same" status="1" index="TID" compare="NAME">

9

<inconsistency type="different" status="1" index="SSN" compare="NAME">
</inconsistencies>

Figure 3.4: Example XML inconsistency tags

The parser will convert each inconsistency tag into a java object so they can be
used by the Inconsistency Checker. The XML parsing also uses Java XML DOM
parser as the inconsistency configuration file will be small.

Inconsistency Checker
The Inconsistency Checker compares incoming records against existing records
within the inconsistency database to find inconsistencies. It starts by sending the
record to the storage module to be added to the database. Then a separate
thread is created for each inconsistency that is being checked. Each thread is
setup to query the database for all records that have the same index value, but a
different compare value. If a conflict is found, an Inconsistency Record is created
for each conflict and sent to the Storage module to be added to the
Inconsistencies Table in the database.

Threader
The Threader accepts threads that query storage to check inconsistencies. The
Threader is implemented using a fixed thread pool and as each thread is
received by the threader it is sent to the pool to be executed or to be added to
the queue. The threader provides a blocking call that waits until all current jobs
are finished.

Storage
Our design allows for flexibility in extending this to other storage mediums, such
as other databases or a storage file, in the future. However, the current
implementation only supports a MySQL database. This module uses JDBC to
support connection with the database and uses the Apache Commons DBCP
library to allow for connection pooling, which improves performance for our
multi-threading.

Inconsistency Database
The inconsistency database stores two types of information, records and
inconsistencies detected. There are two types of tables to do this. The first is a
record table which holds the incoming records. The columns for this type of table
are based on the key elements outlined in the configuration file. Each record also
has a unique identifier. The record table is index using a B-Tree based on the

10

index values provided in the Data Configuration File. This will allow for quicker
lookup times in inconsistency checking. The second kind of table is the
inconsistency table, which holds the detected inconsistencies. Each
inconsistency has five pieces of information: a unique id, the id of the reporter for
the incoming report, the id of the record from the incoming report, the id of the
reporter from the existing record, and the id of the existing record.

3.2 Class Diagram
The class diagram is provided below in figure 3.1. The diagram shows the
relationships and major interfaces for the classes that are implemented as part of
this project.

Figure 3.5: Class Diagram

3.3 Dependencies
● Apache Commons CLI: This is used to parse command line options

when the program is started.

11

● Apache Commons DBCP: This is used to provide connection pooling to
the storage module.

● Apache Log4j: This provides logging functionality to the project.
● SAX Data Parser: This is the event driven XML parser used to parse the

raw data files.

4 Testing Process and Results

4.1 Process
Testing is a large component of our development cycle and requires the use of
several different testing strategies. These strategies help ensure that the solution
we develop meets the needs of Kingland and that we maintain the functionality
throughout development of the program. The testing process we followed
involved Test Driven Development, Unit Testing, Integration Testing and
Performance Testing.

4.1.1 Test Driven Development
The first part of our testing process is to follow the three basic Test Driven
Development (TDD) guidelines. These guidelines are:

1. Create a test and make it fail.
2. Make the test pass by any means necessary
3. Change the code to remove duplication in your project and to improve the

design while ensuring that all tests still pass.
We felt this was important to establish at the beginning of the project because it
would encourage the development of a well rounded test suite. By following the
TDD process, we felt that we could ensure a high percentage of code coverage,
or percentage of lines of code tested, in our unit tests.

4.1.2 Unit Testing
The next part of our testing process was the unit tests, which tie heavily into Test
Driven Development. The theory behind unit tests is that a developer uses a unit
test to assert that in a given scenario gives a correct output. This is usually
testing a specific section of code or function. We chose to use the JUnit and
Mockito testing libraries to make our tests more comprehensible and verbose.

12

JUnit
JUnit is a unit testing framework designed for the Java programming language. It
provides developers the ability to determine the correctness of functions through
various assert functions. These unit tests can also be integrated with gitlab to
help developers ensure that changes made to the code base do not alter
functionality that has already been developed and implemented.

Mockito
Mockito allows programmers to create and test double objects (mock objects) in
automated unit tests for the purpose of Test-driven Development (TDD) or
Behaviour Driven Development (BDD). Mock objects allow developers to create
objects that will function as desired without actually needing an implementation.
The use of Mock objects in unit tests is very important because unit tests should
be created around a single function of the code regardless of the actual
implementation of the code, so unit tests of code that have many dependencies
can be performed modularly.

4.1.3 Integration Testing
While Unit Testing is a large part of the development cycle, some dependencies
are most effectively tested by actually running various data through the system.
These types of tests are called Integration tests because they provide feedback
on how well the system components integrate with each other. Because our
product uses a database as a storage source, we perform integration tests that
revolve around querying and updating a database.

4.2 Testing Criteria
Kingland requires that our product meets several functional and non-functional
criteria. These requirements are primarily concerned with the product’s
performance, configurability, security and accuracy. We sought to write tests that
would allow us to test these criteria and measure how successful we were during
our development. Listed below are all of the functional and non-functional criteria.
Tables 4.1 and 4.2 below specify how each criteria is validated

13

http://junit.org/
http://site.mockito.org/

4.2.1 Functional Criteria

Criteria Validation/Acceptance test

Solution must not use SQL
inner-join statements

A Style Checker is used to ensure that SQL
inner-join statements do not appear in the
production code.

Solution must utilize only
relevant information

The size of the Inconsistency database created by
this solution shall be compared to Kingland’s
central database to determine if this requirement is
satisfied by our solution.

Solution must compare records
from an incoming report against
the central database as well as
other records in the same
report.

Unit tests are used to validate that records are
properly checked against those existing in the
database prior to the run as well as other records
contained in the incoming report.

Solution must update
inconsistency database after
analysis

Unit tests are used to validate that inconsistencies
are correctly sent to the database following the
completion of the check.

Table 4.1: Validation tests for the Functional requirements

4.2.2 Non-Functional Criteria

Criteria Validation/Acceptance test

Solution must perform inconsistency
check faster than current solution.
Preferably in less than 1 hour

This is validated by comparing
performance log files gathered in Log4J
to determine the success of this.

Solution must be able to analyze 100
million or more records at a time

This is validated using tests on large data
sets in order to determine if the solution
can properly function with a central
database of more than 100 million
records.

Solution must find all inconsistencies from
an incoming report

Unit tests are used to validate that all
inconsistencies are found within by the
program.

Table 4.2: Validation tests for Non-Functional requirements

14

4.3 Results
We simulated the operating environment using test data files that have been
provided by Kingland and an AWS instance provided by our advisor. Testing has
been conducted over two different configurations of the solution. One
configuration was single-threading and the other used multi-threading. Figure 4.1
below displays the test data.

Figure 4.1: Performance data

As expected, the threaded version of the project scales better than the single
threaded version. Extrapolating the data, we estimate that the project will run in
under 5 hours for a central database of 100 million records. This provides a
significant increase over Kingland’s current performance. While it does not meet
Kingland’s desired performance, we anticipate further performance gains when
deployed to Kingsland’s AWS instance. Their instance will have more memory
and more processing power that will help improve performance.

5 Appendix

5.1 Operation Manual

5.1.1 Obtaining Source Code
The easiest way to obtain the source code for the project is to download the
project using git. To do this navigate to where you want to place the source code

15

for the project and use the git clone command. To perform this command you will
need to have access to the gitlab repository.

$ git clone https://git.ece.iastate.edu/sd/sdmay18-27.git

5.1.2 Project Configuration
Before running the project two configuration files will need to be setup. The first
configuration file is the Data Configuration file and will tell the project where to
get the data to be tested and how to store that data. The inconsistency
configuration file will tell the program which inconsistencies to check the data for.

5.1.3 Data Configuration File
The Data Configuration file needs to be saved in XML format. An example
configuration file can be seen in Figure 5.1 below.

Figure 5.1: Example Data Configuration File

<inputpath> - The <inputpath> takes a path to a file or folder as value. If the
path is a folder, we have to sort the files in the folder by last modified date.

Example:

<inputpath>/path/to/file.xml</inputpath>
<inputpath>/path/to/folder</inputpath>

<storage-list> - The <storage> defines a list of ways we want to store the data.
The <storage-list> contains one or more <storage> elements.

16

https://git.ece.iastate.edu/sd/sdmay18-27.git

● <storage>
The <storage> defines the way to store our output data. A database type
will required to have <location>, <driver>, <username> and <password>
elements. While a file type will only require <location> element.

Attributes:

type=[database|file] required

Internal Tags:

● <location>
The <location> can take a url or local path as value.

Example:
<location>http://localhost:3306/database</location>

● <driver>
This <driver> is required if the storage type is database. It should
correspond to the driver type for the database being used.

Example:
<driver>mysql</driver>

● <username>
The <username> for the database account

Example:
<username>myusername</username>

● <password>
The <password> for the database account

Example:
<password>mypassword123</password>

<key-elements> - This defines a list of key elements we want to parse out from
the row xml. The <key-elements> contains one or more <element> tags.

● <element>
The <element> defines what elements we want to parse out from the input
file. It will contain two attributes key and alias-keys. The alias-keys take in
a string that contains one or more alternative key names. They are comma
delimited.

Attributes:

key=[ssn|name|address|...] (required)
alias-keys="key1,key2,..." (optional)

17

http://localhost:3306/database

Example:
<element key="ssn" optional-name="IdentifierValue" index='true'>

5.1.4 Inconsistency Configuration File
The inconsistency configuration needs to be saved in an XML format. An
example Inconsistency Configuration file can be seen in Figure 5.2 below.

Figure 5.2: Example Inconsistency Configuration File

<inconsistencies> - This defines a list of key elements we want to match
between with the daily data and previously received records. The
<inconsistencies> contains one or more <inconsistency> tags.

● <inconsistency>
The <inconsistency> defines the inconsistency we want to check. The
status defines the status code of the <inconsistency>. Two records will be
inconsistent when they have the same index key(s) and different compare
key(s).

18

Attribute:
type=[“same”|”different”] required

Is this inconsistency for records from the “same” reporter or
“different reporters

status=int required
Status number of inconsistency usually 2 digits

index=”key” or "key1|key2" or “key1+key2” required
Fields to use for look up. ‘|’ symbol indicates either key 1 or
key 2 match and ‘+ indicated key 1 and key 2 match

compare=”key” or "key1|key2" or “key1+key2” required
Fields to use for comparison. ‘|’ symbol indicates either key
1 or key 2 match and ‘+ indicated key 1 and key 2 match

For example:
<inconsistency type="different" status="2" index="SSN|ITIN",

compare="Name">

5.1.5 Building the project
The project can be built using Maven. To do this navigate to the the source code
directory and run the following command.

$ mvn clean install -Dmaven.test.skip=true

This will compile all the java files and libraries into a .jar file called
sdmay18-27-1.0-SNAPSHOT.jar saved in the targets directory inside project
directory.

5.1.6 Running the project
To run the project move the jar file to the desired location and run the following
command.

$ java -jar <jar-location>/sdmay18-27-1.0-SNAPSHOT.jar -config <data configuration file
location> -inconfile <inconsistency file location>

There are 4 command line options available. These options are outlined in Table
5.1 below.

19

Option Purpose

-config <path-to-configuration-file> Specify the path to a custom configuration
file

-inconfile <path-to-inconsistency-file> Specify the path to a custom
inconsistency file

-inputfile <path-to-input-file> Specify the path to an input file (should be
xml format)

-loglevel [ALL | DEBUG | ERROR | INFO
| OFF]

Specify the level in which the program
should log

Table 5.1: Command Line Options

5.2 Alternative Designs
Initially we planned on leveraging hashing in our design. The program would
hash each important datapoint and then store the hashed values in our central
table. The reasoning behind this was that hashing still preserved equality
checking. We eventually ended up dropping hashing from our design. We found
that the hash length often ended up being more data than many of initial values.
Thus, it did not save nearly as much space as we intended. Furthermore, we
would be required to maintain two large databases, one to hold the hashed
values and one to hold the original data. Finally, hashing would limit the ability to
do inconsistency detection checks that are not based on equality, if Kingland
requires these in the future.

Our initial implementation was developed without the use of threading. This
design was implemented first to ensure the project was able to function correctly
and detect inconsistencies properly. It was only after this version had been tested
and validated that multithreading was added to the project to improve the
performance.

When we first started multithreading, we created new threads per inconsistency
type as well as per reporter id and records. The reporter id threads were chosen
to limit multi table checks. This is because our central database stores the info of

20

each reporter on its own table. With this implementation our maximum number of
threads was 1000. Given our AWS configuration, this ended up slowing down our
program more than helping it. Threading on records introduced the problem of
having to load multiple records into memory at once. This introduced a concern
of having too many records in memory at once and further slowing down the
program. After testing this version we opted to scrape threading on reporter id
and records since there could could a very large amount of reporters and only
multi-thread on inconsistency type. This decision has kept our thread count to a
reasonable and beneficial level.

5.3 Related Works
One consideration for our project is previous work done in detection of
inconsistencies in large data sets. In order for our solution to provide value for
our client it will need to suit their needs better than other existing solutions. We
have looked at a few different systems that are similar to ours. The first of which
is proposed in the paper “An Efficient Method of Data Inconsistency Check for
Very Large Relations.” The solution proposes the utilization of functional
dependencies and applying an association finding algorithm on the data set. This
solution works well with smaller number of rules and when looking for very
specific types of inconsistencies. However, for our project we will have a large
number of rules and we will be checking for many different types of
inconsistencies both intra-record and inter-record. This would lead to many types
of associations in the data set. Our proposed solution will be better than the one
laid out in the paper at handling a variety of inconsistency types.

We also looked at the paper “Inconsistencies in big data” by Zhang. In this paper
he discusses four types of inconsistencies. These types cover one type of
inconsistency we have with missing data, however it fails to highlight
inconsistency between two data sets. The paper proposes the use of a machine
learning system for detecting inconsistencies. While this system is good for
learning how inconsistencies are caused and working to avoid them this is not an
issue Kingland needs solved. Since all of Kingland’s data is sent to it by its
clients it cannot avoid inconsistencies, so strategies for this are not relevant to
their problem. Another reason this solution might not be practical is that Kingland
will require their data analysts to check on inconsistencies to determine the best
course of action. This would further limit the abilities of any machine learning
system deployed. As such our solution is more practical and better suited to
Kingland’s needs for quick data detection and reporting.

21

Another consideration of our project is parsing large XML files very quickly. Since
the daily reports of records received by Kingland are around 2 GB in size, we
need to have an XML parser that can handle this. For this we looked at the
article, “Conveniently Processing Large XML Files with Java”, by Haufler on
parsing XML files in Java. This article highlighted the benefits of using SAX.
Specifically, the consideration of memory management with an XML parser.
Using a parser that loads the entire DOM into memory at once would be costly
since it can often take about three times the storage of the XML file itself. Thus,
SAX seems to be a better choice for processing the large XML files we will
receive. According to testing done by Staveley, there is also a performance
benefit in terms of time when using SAX on large files compared to other Java
XML parsers. This provides further justification for the use of the SAX parser in
our project.

5.4 Figures and Tables

5.4.1 List of Figures

Figure Number Figure Description

Figure 2.1 Block diagram of high-level system architecture.

Figure 3.1 Example XML input tags

Figure 3.2 Example XML storage tags

Figure 3.3 Example XML element tag

Figure 3.4 Example XML inconsistency tags

Figure 3.5 Class Diagram

Figure 4.1 Performance data

Figure 5.1 Example Data Configuration File

Figure 5.2 Example Inconsistency Configuration File

22

5.4.2 List of Tables

Table Number Table Description

Table 4.1 Validation tests for Functional requirements

Table 4.2 Validation tests for Non-Functional requirements

Table 5.1 Command Line Options

5.5 References
Haufler, Andreas. “Conveniently Processing Large XML Files with Java.”

Dzone.com, 10 Jan. 2012,
dzone.com/articles/conveniently-processing-large.

This article explains how using SAX as an alternative to a DOM parser
reduces the amount of memory needed to handle large files because SAX
invokes callbacks to detect XML tokens instead of loading the entire file
into memory. It also shows example uses of the SAX parser.

Murnane, Tafline. “ISO/IEC/IEEE 29119 Software Testing.” ISO/IEC/IEEE 29119

Software Testing Standard, softwaretestingstandard.org, 24 Oct. 2013,
www.softwaretestingstandard.org/part4.php.

ISO/IEC/IEEE standards for specification-based, structure-based and
experience-based testing techniques. Along with outlining a variety of
testing technique this document outlines some standard methods used to
derive test cases that have been approved and adopted as international
standards for software testing.

Smrcka, Ales I., Ph.D. "TEST PLAN OUTLINE (IEEE 829 Format)." IEEE 829 -

Standard for Test Documentation Overview. Brno University of
Technology, n.d. Web.

An outline for a test plan document that pinpoints important areas to
address when creating a test plan. The template also provides a

23

http://www.softwaretestingstandard.org/part4.php

description of each area so that the reader knows exactly what purpose
that area of the test plan addresses.

Staveley, Alex. “JAXB, SAX, DOM Performance.” Dzone.com, 31 Dec. 2011,

dzone.com/articles/jaxb-sax-dom-performance.

This article analyzes a performance evaluation of a JAXB, SAX and DOM
XML parser. It provides the source code the tester used to perform the
tests as well as the various times required for each xml parser with various
sizes of data. For the largest data set, the SAX parser performed the
parsing operations in the least amount of time, and has a much smaller
memory usage than that of a DOM parser. The drawback to the SAX
parser was the amount of developer attention needed to calibrate the
parser to perform the desired operations.

Sug, Hyontai. "An Efficient Method of Data Inconsistency Check for Very Large

Relations." S International Journal of Computer Science and Network
Security 7.10 (2007): 166-69. Web. 22 Sept. 2017.

This defines a strategy to help detect inconsistencies in databases based
on functional dependencies between attributes in a relation and apply an
association rule algorithm based on the attribute sets. It is also assumed
that the database under observation is not designed with much
consideration about normalization.

Zhang, Du. (2013). Inconsistencies in big data. Proceedings of the 12th IEEE

International Conference on Cognitive Informatics and Cognitive
Computing, ICCI*CC 2013. 61-67. 10.1109/ICCI-CC.2013.6622226.

This article examines four types of inconsistencies in big data - temporal,
spatial, text and functional inconsistencies - and how categorizing the
inconsistencies in data can help to improve the quality of big data
analysis.

24

