Data Analytic Tools for
Inconsistency Detection in Large
Data Sets

Project Plan

Team 27
Client - Kingland
Advisers - Cai Ying
Team Members/Roles -

Logan Heitz (Team Lead), Camden Voigt (Technical Lead),
CJ Konopka (Communication Lead), TJ Rogers (QA Lead)
Team Email - sdmay18-27@iastate.edu
Team Website - http://sdmay18-27.sd.ece.iastate.edu/
Revised: September 21, 2017 Version 1

http://sdmay18-27.sd.ece.iastate.edu/

Table of Contents

Introduction
1.1 Project Statement
1.2 Purpose
1.3 Goals

Deliverables

Design
3.1 Previous Work/Literature
3.2 Proposed Solution
3.3 Assessment of Proposed Methods
3.4 Validation and Acceptance

Project Requirements/Specifications
4.1 Functional
4.2 Non-functional

Challenges
5.1 Feasibility
5.2 Cost Estimate

Timeline
6.1 First Semester
6.2 Second Semester

Conclusions
References

Appendices
9.1 List of Figures
9.2 List of Tables
9.3 List of Symbols
9.4 List of Definitions

N o o o o DM PA W O OWWLWW

© © © ©©® © © o ~N~N ~N~N~N

1.Introduction

1.1 Project Statement

Kingland processes a large amount of data that is gathered from its clients everyday.
This data can be relating to consumers, agreements between consumers, or products
offered. This data is compared to Kingland’s central database in order to detect
inconsistencies and then added to said database. The database contains over 100
million records, and around 10% of these records are updated daily. Due to its size, this
comparison takes several hours to run every day. This time stems from the fact the
entire database cannot be loaded into memory at one time and an inefficient use of SQL
join statements to check for inconsistencies. Kingland would like to process 100 million
records for inconsistencies in an hour or less. Additionally this detection must begin with
the latest version of the central database after the reports come in.

1.2 Purpose

The purpose of our project is to provide Kingland Systems with a significantly faster
solution of detecting and flagging data inconsistencies between daily reports and their central
database. This will be executed before May of 2018.

1.3 Goals

e Develop a proprietary data inconsistency detection solution which enables Kingland to
process over 100 million records in one hour

e Have our solution be able to process upwards of 80 different types of inconsistencies of
varying severities.
Always be able to detect inconsistencies of specified types when they are present
Notify technicians of present inconsistencies in a clear and productive manner.
Evaluate at least three third party solutions to data inconsistency detection and compare
their speeds with a proprietary solution

e Have our final solution be planned to be integrated into Kingsland’s day to day
operations after May 2018.

2.Deliverables

System architecture and algorithm design of proprietary solution
System implementation of proprietary solution

Analysis of proprietary solution against industry standard solutions
Test cases of solutions

e User manual

3.Design

3.1 Previous Work/Literature

Article on Inconsistency detection in overlapping reports.

Lee, Pei-Ju, et al. "Inconsistency Detection and Data Fusion in USAR Task."
Engineering Computations, vol. 34, no. 1, Jan. 2017, pp. 18-32. EBSCOhost,
doi:10.1108/EC-11-2015-0339.

Article regarding hashing when applied to large data sets

Petroni, Nick L., Jr., Timothy Fraser, Aaron Walters, and William A. Arbuagh. "An
Architecture for Specification-Based Detection of Semantic Integrity Violations in Kernel
Dynamic Data." USENIX-SS'06 Proceedings of the 15th Conference on USENIX Security
Symposium 15 (2006): 289-304. Web.

An article outlining an experiment which successfully analysed a large data set
Sug, Hyontai. "An Efficient Method of Data Inconsistency Check for Very Large Relations." S

International Journal of Computer Science and Network Security 7.10 (2007): 166-69. Web.
22 Sept. 2017. <http://paper.ijcsns.org/07_book/200710/20071022.pdf>.

This proposed solution uses confidence rules and functional dependencies to detect
inconsistencies very quickly. Our project would not be an ideal application of their solution for
two reasons. First, the data we are working with has many more types than the solution
proposed. Second, it would not solve the problem of having to swap parts of the table out of
memory.

3.2 Proposed Solution

Our proposed solution to this problem is to use either hashing or a binary file format to
make the comparison checks faster than before. Hashing would work because we only
need to do equality checks between the different values. This means we can use
hashing to turn all values into unique integers which make lookup faster and easier in a
SQL table, and also makes our equality comparisons faster. A binary file format could
significantly reduce the amount of space that the data is taking. It could also mean faster
look ups as we could optimize our search based on the format.

http://paper.ijcsns.org/07_book/200710/20071022.pdf

In terms of implementation both hashing and the binary file solution will almost the same.
First, we will create a parser which is a program that accept new data sent to Kingland in
either XML, JSON, or some other format. The parser will run through this data and
convert it into either a database with hashed values or a binary file. It will only convert
the fields that are specified in the configuration file. The parser may also update the
central database which holds all records in their full state. Next, we will run an
inconsistency checker which goes through either the inconsistency database or the
binary file and recognizes conflicts. Once a conflict has been found the inconsistency
checker will go to the central database and update the correct records with an error

code.

A

Reports

(XML, JSON)

Central
Database

Y

Parser

Inconsistency
Checker

r

Database

Inconsistency

Config File

3.3 Assessment of Proposed Methods

Value 1
Value 4
Value 7

~~—_| vaeto

file_type: XML
attributes:
<A1 hashed-32 bit>
<A2 not hashed >
output: SQL

Value 2 ' Value 3
Value 5 . Value 6
Value 8 . Value 9
Value 11 ' Value 12

The proposed solution laid out above solves the main problem of finding and marking
inconsistencies in the data faster than could previously be done. It comes with a few
tradeoffs including having to duplicate data into another database and the possibility of
not being able to detect every type of inter-record inconsistency. Both of these
shortcomings are small issues. While usually duplicating data isn’t a great solution, in

this case the duplicated data will actually take up less space than the original and only
needs to updated as often as the original data. Also, not being able to solve every
inconsistency isn’'t a huge issue as even if we can only solve a large amount of these
issues it would still reduce the time needed to run a inconsistency scan significantly.

The biggest shortcoming of our proposed solution would be that a third party solution
may be able to do this job almost as well. In this case it would almost be easier for
Kingland to use this third party solution as it would have better support from a full
development team, and could be used in some of Kingland’s other solutions.

3.4 Validation and Acceptance

Requirement

Validation/Acceptance test

Doesn’t use SQL inner-join statements

Style Checker

Utilize only relevant information

Analysis database is smaller than central
database

Compare against previous records as well as
other current records.

Use an Oracle

Validate all fields are present in data

Use an Oracle

Handle various forms of input

Configuration tests

Update central database after analysis

Check central database after a given set of
input

Perform faster than current system (3-5
hours)

Run side-by-side with existing system

Analyze 10 million or more records at a time

Load/Stress test

4.Project Requirements/Specifications

4.1 Functional

Doesn’t use SQL inner-join statements.

Utilize only relevant information.

Compare current records to previous records as well as other current records
Validate all fields are present in data

e Handles various forms of input
e Update central database after analysis

4.2 Non-functional

e Perform faster than current system (3-5 hours).
e Analyze 10 million or more records at a time

5.Challenges

5.1 Feasibility

This project is very feasible because every member of our team has been exposed to
the various components of our solution, such as hashing and SQL. The amount of work
we foresee ourselves doing is very manageable, if not less than we would desire.

5.2 Cost Estimate

Kingland has given us a budget of $500.00 for this project. We don’t expect to have any
expenditures for this project as it will be entirely software based, we’re not receiving
payment for our work and each member has the necessary equipment at their disposal
to complete this project. We anticipate working on this project approximately six to ten
hours each week for the entirety of at least one semester.

6. Timeline

6.1 First Semester

Deliverable Description Start Date Due Date

Project Plan V1 Initial draft of the 09/15/2017 09/24/2017
project plan

Team Website V1 Initial version of the | 09/15/2017 09/24/2017
team website

Config File Prototype | Prototype of 09/27/2017 10/06/2017
configuration file for
report parser

Design Document V1 | Initial version of the | 10/06/2017 10/13/2017
design document
Parser Prototype Prototype of parser | 10/06/2017 10/23/2017
to transfer records
from reports to
database
Inconsistency Prototype of 10/06/2017 10/23/2017
Detection Prototype inconsistency
detection
Project Plan V2 Revised project 09/25/2017 10/27/2017
plan
Design Document V2 | Revised Design 10/07/2017 12/08/2017
Document
Final Project Plan Final version of the | 10/28/2017 12/01/2017
project plan
6.2 Second Semester
Deliverable Description Start Date Due Date
Implementation Implementation of 01/08/2018 02/20/2017
proprietary solution
Analysis Analysis of 02/20/2017 03/20/2017
proprietary solution
against industry
standard solutions
User Manual User manual for 03/20/2017 04/02/2017
proprietary solution
Final Report Final report of project | 04/02/2017 04/20/2017

outcomes and
analysis

7.Conclusions
8.References

9.Appendices
9.1 List of Figures
9.2 List of Tables
9.3 List of Symbols

9.4 List of Definitions

