Data Analytic Tools for
Inconsistency Detection in Large
Data Sets

Project Plan

Team 27
Client - Kingland
Advisers - Cai Ying
Team Members/Roles -

Logan Heitz (Team Lead), Camden Voigt (Technical Lead),
CJ Konopka (Communication Lead), TJ Rogers (QA Lead)
Team Email - sdmay18-27 @iastate.edu
Team Website - http://sdmay18-27.sd.ece.iastate.edu/
Revised: October 27, 2017 Version 2

http://sdmay18-27.sd.ece.iastate.edu/

Table of Contents

1 Introduction

1.1 Acknowledgement

1.2 Problem and Project Statement

1.3 Operational Environment

1.4 Intended Users and Uses

1.5 Assumptions and Limitations
1.5.1 Assumptions
1.5.2 Limitations

1.6 Expected End Product and Deliverables
1.6.1 System architecture of proprietary solution
1.6.2 System implementation of proprietary solution
1.6.3 Analysis of proprietary solution
1.6.4 Test cases of solutions
1.6.5 User manual

2 Design

2.1 Previous Work/Literature

2.2 Proposed Solution

2.3 Assessment of Proposed Methods
2.3.1 Technical Approach
2.3.2 Strengths
2.3.3 Weaknesses

2.4 Validation and Acceptance

3 Project Requirements/Specifications
3.1 Functional
3.2 Non-functional
3.3 Standards
3.3.1 Testing Protocols
3.3.2 Ethics
3.3.3 Project Applications

4 Challenges
4.1 Feasibility
4.2 Cost Estimate

5 Timeline
5.1 First Semester
5.2 Second Semester

O © ©W 0 o N O o oo ooag a0~ PDMOOWW®

6 Closing Material
6.1 Conclusion
6.2 References
6.3 Appendices
6.3.1 List of Figures
6.3.2 List of Tables

14
14
15
16
16
16

1 Introduction

1.1 Acknowledgement

This project would not be possible without the assistance of the faculty
advisor Dr. Cai. Working with Dr. Cai on this project are two graduate students
Guolei Yang and Zehua Li who have provided invaluable assistance in design
and implementation of this project. Finally, this project relies on the support of
Kingland Systems for testing data and any other needed materials for
implementation of the project.

1.2 Problem and Project Statement

Kingland processes a large amount of data that it receives from its clients
everyday. This data can be related to customers, companies, or agreements
between entities. This data is compared to Kingland’s central database in order
to detect inconsistencies and then added to the database. An example of an
inconsistency would be two customer records containing the same social security
number, but different names. This is an issue, since a social security number
should be unique. As such, detecting such inconsistencies is important to
Kingland’s clients. The database contains over 100 million records, and around
10% of these records are updated or inserted daily. Due to its size, this
comparison takes several hours to run every day. This time stems from the fact
the entire database cannot be loaded into main memory at one time and the use
of SQL join statements to check for inconsistencies, which is inefficient. Kingland
would like to process 100 million records for inconsistencies in an hour or less.
Additionally this detection must begin with the latest version of the central
database after the reports come in.

1.3 Operational Environment

Our product will operate on the backend of Kingland’s system and will be
automated to detect inconsistencies on incoming reports. Thus, the product will
need to be able to operate with minimal user input and will need to generate
results that can be integrated into Kingland’s existing infrastructure.

1.4 Intended Users and Uses

This project will supply Kingland’s analysts with information on
inconsistencies within client data. The product will be on the backend of
Kingland’s system and its processes will be automated. As such, no users will
directly interact with our system on a day to day passes as Kingland will display
the results of our output using their own user interface. However, if Kingland
wishes to improve the system in the future or needs to fix something their
developers will need access to the code and documentation of the project. Thus,
it is important to provide material for future developers on this project.

1.5 Assumptions and Limitations

1.5.1 Assumptions

e There will be a central database containing more than 100 million
historical reports
The end product shall not require a user interface
The product will only need to detect equality comparisons
The central database will be periodically updated with new data

1.5.2 Limitations

e The program will not be able to be tested on the full sized dataset
e The program cannot be tested with all possible configurations
e Program will be deployed on a machine with less than 64 GB of RAM

1.6 Expected End Product and Deliverables

1.6.1 System architecture of proprietary solution
Delivery Date: 01/20/2017

This deliverable will encompass the design of the proprietary solution that
will be developed to solve this problem. This deliverable will be expanded on in
the design document and will involve the overall system block diagram, UML
class diagrams, and class documentation.

1.6.2 System implementation of proprietary solution
Delivery Date: 02/20/2017

In addition to the architecture of the proprietary solution an implementation
of the solution will be developed in java. This implementation will be provided to
the client for use in their daily inconsistency checking.

1.6.3 Analysis of proprietary solution
Delivery Date: 03/20/2017

There are many standard industry solutions that could be utilized to solve
this problem. Following the implementation of the proprietary solution the team
will test the solution to determine its average runtime along with the detection
rate of inconsistencies. The team will perform similar analysis of standard
industry solutions and provide the findings to the client so they might evaluate
which solution is best for their needs.

1.6.4 Test cases of solutions
Delivery Date: 04/02/2017

All test cases that are used for the solution will be provided for the client
so they might verify the solution is valid using the test cases. They will also be
able to utilize the test case if further development is needed for the project.

1.6.5 User manual
Delivery Date: 04/02/2017

A user manual that will discuss how to set up the application and
automate its processes. This will include documentation on how to set up the
configuration file for their needs. It will also include how they can incorporate the
outputs of the application with their user interface.

2 Design

2.1 Previous Work/Literature

One consideration for our project is previous work done in detection of
inconsistencies in large data sets. In order for our solution to provide value for
our client it will need to suit their needs better than other existing solutions. We
have looked at a few different systems that are similar to ours. The first of which
is proposed in the paper “An Efficient Method of Data Inconsistency Check for
Very Large Relations.” The solution proposes the utilization of functional
dependencies and applying an association finding algorithm on the data set. This
solution works well with smaller number of rules and when looking for very
specific types of inconsistencies. However, for our project we will have a large
number of rules and will be checking for many different types of inconsistencies
both intra-record and inter-record. This would lead to many types of associations
in the data set. Our proposed solution will be better at handling a variety of
inconsistency types. Another issue with this solution is it does not handle the
issue of swapping the table in and out of main memory. Our solution helps to
reduce the size of the table using hashing and thus all or most of the table will be
able to load into main memory at once and we can avoid costly disk access.
Another potential issue here is in the paper “Inconsistencies in big data” by
Zhang. In this paper he discusses four types of inconsistencies. These types
cover one type of inconsistency we have with missing data, however it fails to
highlight inconsistency between two data sets. The paper proposes the use of a
machine learning system for detecting inconsistencies. While this system is good
for learning how inconsistencies are caused and working to avoid them this is not
an issue Kingland needs solved. Since all of Kingland’s data is sent to it by its
clients it cannot avoid inconsistencies, so strategies for this are not relevant to
their problem. Another reason this solution might not be practical is that Kingland
will require their data analysts to check on inconsistencies to determine the best
course of action. This would further limit the abilities of any machine learning
system deployed. As such our solution is more practical and better suited to
Kingland’s needs for quick data detection and reporting.

Another consideration on our project is parsing large XML files very
quickly. Since the daily reports of records received by Kingland can be in excess
of 100 GB we need to have an XML parser that can handle this. For this we

looked at the article by Haufler on parsing XML files in Java. This article highlight
the benefits of SAX for our project. Specifically the consideration of memory
management with an XML parser. Using a parser that loads the entire DOM into
memory at once would be costly since it can often take about three times the
storage of the XML file itself. Thus, SAX seems to be a better choice for
processing the large XML files we will receive. According to testing done by
Staveley, there is also a performance benefit in terms of time when using SAX on
large files compared to other Java XML parsers. This provides further justification
for the use of the SAX parser in our project.

2.2 Proposed Solution

Our proposed solution to this problem is to create a proprietary system
that will utilize hashing to speed up comparisons and to reduce the memory
required by the database. Hashing will improve the speed of comparisons as we
only need to do equality checking. Therefore values can simply be compared
after they are hashed to see if they are equal. This allows us to eliminate the
current use of SQL inner join statements in favor of lookups on indexed columns.
By index the entries in the database by the columns that are important for
equality comparison we can quickly lookup information. Our solution also
reduces the space of the table as we will only need to store the hash values
which can be smaller than the original values and only stores those attributes
that are necessary for inconsistency detection. This reduces the table size and
allow more or all of it to be loaded into main memory at once.

First, we will create a configuration file format. This file will specify how the
we should process the daily reports received. We will then create a parser that
will turn this file into a configuration object.Then we will create a parser which is a
program that accept new data sent to Kingland in either XML, JSON, or some
other format. The parser will run through this data and convert send it into the
database as specified by the configuration object. The parser may also update
the central database which holds all records in their full state. Next, we will run an
inconsistency checker which goes through either the inconsistency database
using SQL lookups on the indexed columns and recognizes conflicts. Once a
conflict has been found the inconsistency checker will go to the central database
and update the correct records with an error code. An overview of the different
modules used in the project can be found in Figure 2.1.

Figure 2.1: Block diagram of high-level system architecture.

AN

Reports

(XML, JSON)

Central
Database

Y

Parser < Data Config File

Inconsistency » Matching Config
Checker B File

Value 1

Inconsistency
Database

Value 4
Value 7

\ Value 10

2.3 Assessment of Proposed Methods

2.3.1 Technical Approach

file_type: XML
attributes:
<A1 hashed-32 bit>
<A2 not hashed >
output: SQL
Value 2 Value 3
Value 5 Value 6
Value 8 Value 9
Value 11 Value 12

The design laid out above fulfills the specifications laid out in section 2.1
through a variety of methods. The use of a configuration file allows us to handle
various forms of input and to utilize only the relevant information by any given
scan by allowing Kingland to specify those things before the program runs.
Creating a hashed database allows us to get rid of SQL inner-join statements
because we can just do simple equality comparisons. It also lets us do
inconsistency checking in less than one hour using the speed of equality checks.
Also, by using a good hashing function will produce few conflicts and therefore
only a few false positive marks. Finally, our design allows ours programs to easily

access both the central database and the hashed database which makes
comparing and updating both very easy.

2.3.2 Strengths

This solution has several strengths that make it an appropriate choice for
this problem. The first strength is the ease of implementation. This solution is
built on a few small parts that can be implemented with relative ease. This will
give more time to analyze the proposed solution against the existing solution and
other industry solutions to determine its viability. Another strength of this solution
is it is very modular. The solution is separated out into several distinct parts and
changing one part will not require changes to the entire design. The solution also
allows for us to quickly adapt to changes in the problem statement. The design of
the configuration file allows for us to quickly add in new inconsistencies if needed
and modify the settings of current ones to adapt to any changes we encounter.
Finally, the configuration file also allows us to testing much easier as it can be
utilized to output to multiple different types of database or files so they can be
tested against each other.

2.3.3 Weaknesses

This solution comes with a few tradeoffs including having to duplicate data
into another database and the possibility of not being able to detect every type of
inter-record inconsistency. Both of these shortcomings are small issues. While
usually duplicating data isn’t a great solution, in this case the duplicated data will
actually take up less space than the original and only needs to updated as often
as the original data. Also, not being able to solve every inconsistency isn’'t a huge
issue as even if we can only solve a large amount of these issues it would still
reduce the time needed to run a inconsistency scan significantly.

A more significant issue with this solution is the potential for false positive
detections of inconsistencies. Since the values we compare will be hashed, there
is a possibility of collisions. This is a tradeoff of speeding up the system that is
deemed acceptable. As an analyst will need to go through the flagged
inconsistencies, to determine appropriate actions, it will be a simple matter for
them to mark it as a false positive and move on.

The biggest shortcoming of our proposed solution would be that a third
party solution may be able to do this job almost as well. In this case it may be
easier for Kingland to use this third party solution as it would have better support

9

from a full development team, and could be used in some of Kingland’s other
solutions. In order to address this we will be comparing the performance of our
solution with several standard industry solutions. This will allow us to report our
opinion to Kingland on which solution will be best for their needs.

2.4 Validation and Acceptance

Table 2.1: Table of validation and acceptance tests.

Requirement

Validation/Acceptance test

Doesn’t use SQL inner-join statements

Style Checker

Utilize only relevant information

Analysis database is smaller than central
database

Compare against previous records as well
as other current records.

Use an Oracle

Validate all fields are present in data

Use an Oracle

Handle various forms of input

Configuration tests

Update central database after analysis

Check central database after a given set
of input

Perform faster than current system (3-5
hours)

Run side-by-side with existing system

Analyze 10 million or more records at a
time

Load/Stress test

3 Project Requirements/Specifications

3.1 Functional

Doesn’t use SQL inner-join statements.
Utilize only relevant information.
Compare current records to previous records as well as other current

records

Validate all fields are present in data

Handles various forms of input

10

e Update central database after analysis

3.2 Non-functional

e Perform inconsistency check in less than 1 hour for daily reports
e Analyze 100 million or more records at a time

3.3 Standards

3.3.1 Testing Protocols

First, a protocol that will be implemented in the test environment is a list of
items and features to be tested. This will be maintained in the design document
as well as the pass/fail criteria for each of these items. The purpose of this
protocol is to verify that the function of each feature has been fully developed and
that there is a method of determining how successful the feature is. This protocol
is also outlined by IEEE 829 as a good practice for writing test documentation.

Second, we will use a protocol to utilize a variety of testing techniques to
test all facets of the product and ensure it meets the standards outlined by
Kingland. These testing techniques are outlined in great deal in ISO/IEC/IEEE
29119-4 and will serve to group similar functions into actionable test sets.

The third protocol our tests will follow is to use a third-party logging
software to assess the execution time of each function in the product to
determine bottlenecks in the xml processing and inconsistency detection and
provide insight on how those processes can be more efficient and timely. This is
not specifically outlined by the IEEE, but does fall under the broad category of
performance testing.

The final protocol to be implemented in the testing of this product is to
have complete code coverage in the unit tests. This doesn’t ensure complete
error detection, but it does ensure that the behavior of the SUT (software under
test) is thoroughly understood by the developer and that any future changes to
the SUT will not affect the current functionality of the software.

3.3.2 Ethics

None of these practices should be considered unethical by ISO, IEC or
IEEE because they are primarily gathered from standards outlined by these

11

organizations. If any of these practices are deemed unethical by the team at a
later date, they will be revised or removed so that they are no longer unethical
and will adhere to principles and criteria outlined by the ISO/IEC/IEEE.

3.3.3 Project Applications

These standards are very applicable to this project because they outline
how the team will perform testing and will give a guide to follow when writing and
executing tests so that the tests will all have a common level of detail and
structure so that a level of risk can be removed from the product. This is
important because the less risk associated with the product, the more accurate
the schedule will be and unforeseen costs due to risk will be mitigated.

4 Challenges

4.1 Feasibility

This project is very feasible because every member of our team has been
exposed to the various components of our solution, such as hashing and SQL.
The amount of work we foresee ourselves doing is very manageable, if not less
than we would desire.

4.2 Cost Estimate

Kingland has given us a budget of $500.00 for this project. We don’t
expect to have any expenditures for this project as it will be entirely software
based, we’re not receiving payment for our work and each member has the
necessary equipment at their disposal to complete this project. We anticipate
working on this project approximately six to ten hours each week for the entirety
of at least one semester.

12

5 Timeline

5.1 First Semester

Table 5.1: First semester project timeline.

Deliverable Description Start Date Due Date
Project Plan V1 Initial draft of the | 09/15/2017 09/24/2017
project plan
Team Website V1 Initial version of 09/15/2017 09/24/2017
the team website
Config File Prototype of 09/27/2017 10/06/2017
Prototype configuration file
for report parser
Design Document Initial version of 10/06/2017 10/13/2017
V1 the design
document
Parser Prototype Prototype of 10/06/2017 10/23/2017
parser to transfer
records from
reports to
database
Project Plan V2 Revised project 09/25/2017 10/27/2017
plan
Inconsistency Prototype of 10/30/2017 11/06/2017
Detection Prototype | inconsistency
detection
Design Document Revised Design 10/07/2017 12/08/2017
V2 Document
Final Project Plan Final version of 10/28/2017 12/01/2017

the project plan

13

5.2 Second Semester

Table 5.2: Second semester project timeline.

Deliverable Description Start Date Due Date

Implementation Implementation of | 01/08/2018 02/20/2017
proprietary solution

Analysis Analysis of 02/20/2017 03/20/2017
proprietary solution
against industry

standard solutions

User Manual User manual for 03/20/2017 04/02/2017
proprietary solution

Final Report Final report of 04/02/2017 04/20/2017
project outcomes
and analysis

6 Closing Material

6.1 Conclusion

Kingland is in need of a product that can detect inconsistencies in large
data sets in an efficient manner so that they can reduce the resources necessary
to run these daily detections. Our product will solve this problem by using hash
functions to reduce the size of the information that is being compared as well as
only comparing specific information that is sensitive to individuals and companies
to ensure the consistency of that information. This product will execute faster
than the current method of using SQL inner join statements and will allow a
larger amount of data to be processed concurrently because of the smaller
overall data footprint. Our product will save Kingland time and money in their
inconsistency detection.

14

6.2 References

Haufler, Andreas. “Conveniently Processing Large XML Files with Java.”
Dzone.com, 10 Jan. 2012, dzone.com/articles/conveniently-processing-large.

Murnane, Tafline. “ISO/IEC/IEEE 29119 Software Testing.” ISO/IEC/IEEE 29119
Software Testing Standard, softwaretestingstandard.org, 24 Oct. 2013,
www.softwaretestingstandard.org/part4.php.

Smrcka, Ales I., Ph.D. "TEST PLAN OUTLINE (IEEE 829 Format)." IEEE 829 -
Standard for Test Documentation Overview. Brno University of Technology, n.d.
Web.

Staveley, Alex. “JAXB, SAX, DOM Performance.” Dzone.com, 31 Dec. 2011,
dzone.com/articles/jaxb-sax-dom-performance.

Sug, Hyontai. "An Efficient Method of Data Inconsistency Check for Very Large
Relations." S International Journal of Computer Science and Network Security
7.10 (2007): 166-69. Web. 22 Sept. 2017.

Zhang, Du. (2013). Inconsistencies in big data. Proceedings of the 12th IEEE

International Conference on Cognitive Informatics and Cognitive Computing,
ICCI*CC 2013. 61-67. 10.1109/ICCI-CC.2013.6622226.

15

6.3 Appendices

6.3.1 List of Figures

Figure Number

Figure Description

Figure 2.1

Block diagram of high-level system architecture.

6.3.2 List of Tables

Figure Number

Figure Description

Table 2.1 Table of validation and acceptance tests
Table 5.1 First semester project timeline
Table 5.2 Second semester project timeline

16

