

Data Analytic Tools for
Inconsistency Detection in Large

Data Sets
Project Plan

Team 27
Client - Kingland

Advisers - Cai Ying
Team Members/Roles -

Logan Heitz (Team Lead), Camden Voigt (Technical Lead),
CJ Konopka (Communication Lead), TJ Rogers (QA Lead)

Team Email - sdmay18-27@iastate.edu
Team Website - http://sdmay18-27.sd.ece.iastate.edu/

Revised: December 1, 2017 Version 3

http://sdmay18-27.sd.ece.iastate.edu/

Table of Contents
1 Introduction 3

1.1 Acknowledgement 3
1.2 Problem and Project Statement 3
1.3 Operational Environment 3
1.4 Intended Users and Uses 3
1.5 Assumptions and Limitations 4

1.5.1 Assumptions 4
1.5.2 Limitations 4

1.6 Expected End Product and Deliverables 4
1.6.1 System architecture of proprietary solution 4
1.6.2 System implementation of proprietary solution 4
1.6.3 Analysis of proprietary solution 5
1.6.4 Test cases of solutions 5
1.6.5 User manual 5

2 Design 5
2.1 Previous Work/Literature 5
2.2 Proposed Solution 7
2.3 Assessment of Proposed Methods 8

2.3.1 Technical Approach 8
2.3.2 Strengths 9
2.3.3 Weaknesses 9

3 Project Requirements/Specifications 10
3.1 Functional Requirements 10
3.2 Non-functional Requirements 11
3.3 Standards 11

3.3.1 Testing Protocols 11
3.3.2 Ethics 12
3.3.3 Project Applications 12

4 Test Plan 12
4.1 Validation and Acceptance Testing 12
4.2 Documentation 13
4.3 Testing Procedure 14

5 Challenges 14
5.1 Feasibility 14
5.2 Cost Estimate 15

1

6 Timeline 15
6.1 First Semester 15
6.2 Second Semester 16

7 Closing Material 19
7.1 Conclusion 19
7.2 References 20
7.3 Appendices 20

7.3.1 List of Figures 20
7.3.2 List of Tables 21

2

1 Introduction

1.1 Acknowledgement
This project would not be possible without the assistance of the faculty

advisor Dr. Cai. Working with Dr. Cai on this project are two graduate students
Guolei Yang and Zehua Li who have provided invaluable assistance in design
and implementation of this project. Finally, this project relies on the support of
Kingland Systems for testing data and any other needed materials for
implementation of the project.

1.2 Problem and Project Statement
Kingland processes a large amount of data that it receives from its clients

everyday. This data can be relating to customers, companies, or agreements
between entities. This data is compared to a central inconsistency database in
order to detect inconsistencies and then added to the database. An example of
an inconsistency would be two customer records containing the same social
security number, but different names. This is an issue, since a social security
number should be unique. The database contains over 100 million records, and
around 10% of these records are updated or inserted daily. Due to its size, this
comparison takes several hours to run every day. This time stems from the fact
the entire database cannot be loaded into main memory at one time and the use
of SQL inner join statements to check for inconsistencies, which is inefficient.
Kingland would like to process 100 million records for inconsistencies in an hour
or less. Additionally this detection must begin with the latest version of the
inconsistency database after the reports come in.

1.3 Operational Environment
Our product will operate on the backend of Kingland’s system and will be

automated to detect inconsistencies on incoming reports. Thus, the product will
need to be able to operate with minimal user input and will need to generate
results that can be integrated into Kingland’s existing infrastructure.

1.4 Intended Users and Uses

3

This project will supply Kingland’s analysts with information on
inconsistencies within client data. The product will be on the backend of
Kingland’s system and its processes will be automated. As such, no users will
directly interact with our system on a day to day passes as Kingland will display
the results of our output using their own user interface. However, if Kingland
wishes to improve the system in the future or needs to fix something their
developers will need access to the code and documentation of the project. Thus,
it is important to provide material for future developers on this project.

1.5 Assumptions and Limitations

1.5.1 Assumptions
● There will be an inconsistency database containing more than 100 million

historical reports
● The end product shall not require a user interface
● The product will only need to detect equality comparisons
● The inconsistency database will be periodically updated with new data

1.5.2 Limitations
● The program will not be able to be tested on the full sized dataset
● The program cannot be tested with all possible configurations
● Program will be deployed on a machine with less than 64 GB of RAM

1.6 Expected End Product and Deliverables

1.6.1 System architecture of proprietary solution
Delivery Date: 01/20/2018

This deliverable will encompass the design of the proprietary solution that

will be developed to solve this problem. This deliverable will be expanded on in
the design document and will involve the overall system block diagram, UML
class diagrams, and class documentation.

1.6.2 System implementation of proprietary solution
Delivery Date: 02/20/2018

4

In addition to the architecture of the proprietary solution an implementation
of the solution will be developed in java. This implementation will be provided to
the client for use in their daily inconsistency checking.

1.6.3 Analysis of proprietary solution
Delivery Date: 03/20/2018

There are many standard industry solutions that could be utilized to solve

this problem. Following the implementation of the proprietary solution the team
will test the solution to determine its average runtime along with the detection
rate of inconsistencies. The team will perform similar analysis of standard
industry solutions and provide the findings to the client so they might evaluate
which solution is best for their needs.

1.6.4 Test cases of solutions
Delivery Date: 04/02/2018

All test cases that are used for the solution will be provided for the client

so they might verify the solution is valid using the test cases. They will also be
able to utilize the test case if further development is needed for the project.

1.6.5 User manual
Delivery Date: 04/02/2018

A user manual that will discuss how to set up the application and

automate its processes. This will include documentation on how to set up the
configuration file for their needs. It will also include how they can incorporate the
outputs of the application with their user interface.

2 Design

2.1 Previous Work/Literature
One consideration for our project is previous work done in detection of

inconsistencies in large data sets. In order for our solution to provide value for
our client it will need to suit their needs better than other existing solutions. We
have looked at a few different systems that are similar to ours. The first of which
is proposed in the paper “An Efficient Method of Data Inconsistency Check for

5

Very Large Relations.” The solution proposes the utilization of functional
dependencies and applying an association finding algorithm on the data set. This
solution works well with smaller number of rules and when looking for very
specific types of inconsistencies. However, for our project we will have a large
number of rules and will be checking for many different types of inconsistencies
both intra-record and inter-record. This would lead to many types of associations
in the data set. Our proposed solution will be better at handling a variety of
inconsistency types. Another issue with this solution is it does not handle the
issue of swapping the table in and out of main memory. Our solution helps to
reduce the size of the table using hashing and thus all or most of the table will be
able to load into main memory at once and we can avoid costly disk access.
Another potential issue here is in the paper “Inconsistencies in big data” by
Zhang. In this paper he discusses four types of inconsistencies. These types
cover one type of inconsistency we have with missing data, however it fails to
highlight inconsistency between two data sets. The paper proposes the use of a
machine learning system for detecting inconsistencies. While this system is good
for learning how inconsistencies are caused and working to avoid them this is not
an issue Kingland needs solved. Since all of Kingland’s data is sent to it by its
clients it cannot avoid inconsistencies, so strategies for this are not relevant to
their problem. Another reason this solution might not be practical is that Kingland
will require their data analysts to check on inconsistencies to determine the best
course of action. This would further limit the abilities of any machine learning
system deployed. As such our solution is more practical and better suited to
Kingland’s needs for quick data detection and reporting.

Another consideration on our project is parsing large XML files very

quickly. Since the daily reports of records received by Kingland can be in excess
of 100 GB we need to have an XML parser that can handle this. For this we
looked at the article by Haufler on parsing XML files in Java. This article highlight
the benefits of SAX for our project. Specifically the consideration of memory
management with an XML parser. Using a parser that loads the entire DOM into
memory at once would be costly since it can often take about three times the
storage of the XML file itself. Thus, SAX seems to be a better choice for
processing the large XML files we will receive. According to testing done by
Staveley, there is also a performance benefit in terms of time when using SAX on
large files compared to other Java XML parsers. This provides further justification
for the use of the SAX parser in our project.

6

2.2 Proposed Solution
Our proposed solution to this problem is to create a proprietary system

that will utilize hashing to speed up comparisons and to reduce the memory
required by the database. Hashing will improve the speed of comparisons as we
only need to do equality checking. Therefore, values can simply be compared
after they are hashed to see if they are equal. This allows us to eliminate the
current use of SQL inner join statements in favor of lookups on indexed columns.
By indexing the entries in the database by the columns that are important for
equality comparison we can quickly lookup information. Our solution also
reduces the space of the table as we will only need to store the hash values
which can be smaller than the original values and only stores those attributes
that are necessary for inconsistency detection. This reduces the table size and
will allow more or all of it to be loaded into main memory at once.

First, we will create a configuration file format. This file will specify how we
should process the daily reports received. We will then create a configuration
parser that will turn this file into a configuration object. The configuration object
will be utilized by the raw data parser to accept the daily reports that Kingland
receives. As each item in a report is parsed it will be sent to the inconsistency
matcher. By sending the parsed data one element at a time we will not have to
bring all of them into main memory at once, which will improve the performance
of our program. The inconsistency matcher will check the element against the
inconsistency database. If there is an inconsistency, then the element will be sent
to an inconsistency report. Otherwise it will be sent to the exporter which will add
it to the inconsistency database. An overview of the different modules used in the
project can be found in Figure 2.1.

7

Figure 2.1: Block diagram of high-level system architecture.

2.3 Assessment of Proposed Methods

2.3.1 Technical Approach
The design laid out above fulfills the specifications laid out in section 2.1

through a variety of methods. The use of a configuration file allows us to handle
various forms of input and to utilize only the relevant information by any given
scan by allowing Kingland to specify those things before the program runs.
Creating a hashed database allows us to get rid of SQL inner-join statements
because we can just do simple equality comparisons. It also lets us do

8

inconsistency checking in less than one hour using the speed of equality checks.
Also, by using a good hashing function will produce few conflicts and therefore
only a few false positive marks. Finally, our design allows ours programs to easily
access the inconsistency database used in inconsistency detection.

2.3.2 Strengths
This solution has several strengths that make it an appropriate choice for

this problem. The first strength is the ease of implementation. This solution is
built on a few small parts that can be implemented with relative ease. This will
give more time to analyze the proposed solution against the existing solution and
other industry solutions to determine its viability. Another strength of this solution
is it is very modular. The solution is separated out into several distinct parts and
changing one part will not require changes to the entire design. The solution also
allows for us to quickly adapt to changes in the problem statement. The design of
the configuration file allows for us to quickly add in new inconsistencies if needed
and modify the settings of current ones to adapt to any changes we encounter.
Finally, the configuration file also allows us to testing much easier as it can be
utilized to output to multiple different types of database or files so they can be
tested against each other.

2.3.3 Weaknesses
This solution comes with a few tradeoffs including having to duplicate data

into another database and the possibility of not being able to detect every type of
inter-record inconsistency. Both of these shortcomings are small issues. While
usually duplicating data isn’t a great solution, in this case the duplicated data will
actually take up less space than the original and only needs to updated as often
as the original data. Also, not being able to solve every inconsistency isn’t a huge
issue as even if we can only solve a large amount of these issues it would still
reduce the time needed to run a inconsistency scan significantly.

A more significant issue with this solution is the potential for false positive
detections of inconsistencies. Since the values we compare will be hashed, there
is a possibility of collisions. This is a tradeoff of speeding up the system that is
deemed acceptable. As an analyst will need to go through the flagged
inconsistencies, to determine appropriate actions, it will be a simple matter for
them to mark it as a false positive and move on.

9

The biggest shortcoming of our proposed solution would be that a third
party solution may be able to do this job almost as well. In this case it may be
easier for Kingland to use this third party solution as it would have better support
from a full development team, and could be used in some of Kingland’s other
solutions. In order to address this we will be comparing the performance of our
solution with several standard industry solutions. This will allow us to report our
opinion to Kingland on which solution will be best for their needs.

3 Project Requirements/Specifications

3.1 Functional Requirements
● Solution must not use SQL inner-join statements

○ Kingland’s current solution to this problem is to use SQL inner-join
statements which can take a long time. Thus, our solution should
eliminate these statements to save time.

● Solution must utilize only relevant information
○ Our solution needs to run using only the small amount of fields

needed to actually detect an inconsistency. This will reduce
memory utilize and speed up the detection.

● Solution must compare current records to previous records as well as
other current records

○ Our solution needs to be able to compare inconsistencies between
records found in new reports and also between new reports and
previously saved records.

● Solution must validate all fields are present in data
○ Our solution needs to ensure that all required fields are in each

received record.
● Solution must handle various forms of input

○ Our solution should be able to handle data input in multiple formats
including XML and JSON.

● Solution must update inconsistency database after analysis
○ Our solution should update an inconsistency database so that

future checks will work with the latest version of the database.

10

3.2 Non-functional Requirements
● Solution must perform inconsistency check in less than 1 hour for daily

reports
○ Our solution should be able to detect and report all inconsistencies

in a new report in an hour or less.
● Solution must be able to analyze 100 million or more records at a time

○ New reports can have 100 million records or more. Therefore, our
solution should be able to handle this size of input.

● Solution must run on Kingland’s system
○ Our solution is a proprietary solution for Kingland and therefore

must be able to run on their hardware.
● Solution reports less than 5% false positives

○ Our solution should have less than 5% false positive
inconsistencies to reduce the time spent fixing these.

3.3 Standards

3.3.1 Testing Protocols
First, a protocol that will be implemented in the test environment is a list of

items and features to be tested. This will be maintained in the design document
as well as the pass/fail criteria for each of these items. The purpose of this
protocol is to verify that the function of each feature has been fully developed and
that there is a method of determining how successful the feature is. This protocol
is also outlined by IEEE 829 as a good practice for writing test documentation.

Second, we will use a protocol to utilize a variety of testing techniques to
test all facets of the product and ensure it meets the standards outlined by
Kingland. These testing techniques are outlined in great deal in ISO/IEC/IEEE
29119-4 and will serve to group similar functions into actionable test sets.

The third protocol our tests will follow is to use a third-party logging
software to assess the execution time of each function in the product to
determine bottlenecks in the xml processing and inconsistency detection and
provide insight on how those processes can be more efficient and timely. This is
not specifically outlined by the IEEE, but does fall under the broad category of
performance testing.

11

The final protocol to be implemented in the testing of this product is to

have complete code coverage in the unit tests. This doesn’t ensure complete
error detection, but it does ensure that the behavior of the SUT (software under
test) is thoroughly understood by the developer and that any future changes to
the SUT will not affect the current functionality of the software.

3.3.2 Ethics
None of these practices should be considered unethical by ISO, IEC or

IEEE because they are primarily gathered from standards outlined by these
organizations. If any of these practices are deemed unethical by the team at a
later date, they will be revised or removed so that they are no longer unethical
and will adhere to principles and criteria outlined by the ISO/IEC/IEEE.

3.3.3 Project Applications
These standards are very applicable to this project because they outline

how the team will perform testing and will give a guide to follow when writing and
executing tests so that the tests will all have a common level of detail and
structure so that a level of risk can be removed from the product. This is
important because the less risk associated with the product, the more accurate
the schedule will be and unforeseen costs due to risk will be mitigated.

4 Test Plan

4.1 Validation and Acceptance Testing

Requirement Validation/Acceptance test

Solution must not use SQL inner-join
statements

A Style Checker will be used to ensure
that SQL inner-join statements do not
appear in the production code.

Solution must utilize only relevant
information

The size of the Inconsistency database
created by this solution shall be
compared to Kingland’s central database
to determine if this requirement is
satisfied by our solution.

12

Solution must compare current records to
previous records as well as other current
records

Using Kingland’s current solution as an
Oracle to determine if our solution detects
the same inconsistencies.

Solution must validate all fields are
present in data

A unit test will be used to confirm that any
missing fields in the raw data are flagged
as such.

Solution must handle various forms of
input

Unit tests will be used with multiple forms
of sample data to determine how well the
parser can handle different configurations
of input data.

Solution must update inconsistency
database after analysis

Kingland’s main database will be checked
to verify that it has been updated with the
information that has been verified as
consistent.

Solution must perform inconsistency
check in less than 1 hour for daily reports

We will compare performance log files
gathered in Log4J to determine the
success of this.

Solution must be able to analyze 100
million or more records at a time

This will be validated using actual data
Kingland receives on a daily basis and
success will be determined based on
whether or not our solution can perform
faster and with the same accuracy as
Kingland’s system.

Solution must run on Kingland’s system We will work with Kingland to deploy our
solution on their machine to test its
performance. We will also attempt to test
on machines with similar specifications to
Kingland’s.

Solution reports less than 5% false
positives

This will be tested by processing
inconsistency files and determining an
average number of false positives.

Table 4.1: Table of validation and acceptance tests.

4.2 Documentation
Documentation is an important part of software testing and development

because it allows developers to understand tests, categorize bugs, track the
progress of a bug fix and keep a history of encountered bugs. Because of this,

13

defect reports will be used to track and record bugs found during development
and testing and will be recorded as an Issue in GitLab using a template.

4.3 Testing Procedure
The testing process for this project revolves around test driven

development. Unit tests will be written to capture the functionality of a module
and then the amount of code necessary to make the test pass will be written. A
test suite will be developed in parallel to the production code and will be run with
continuous integration on GitLab. This will allow the developers to have constant
feedback as to whether or not their code changes currently implemented
functionality of the code or if the changes are in-line with the functional
requirements of the module.

If a developer finds a bug, they will attempt to recreate the bug and record
those steps in an bug report Issue in GitLab. The bugs will be assigned to
developers to fix at our weekly meetings if the severity and importance are “Low”,
otherwise more immediate action will be needed and the Quality Assurance Lead
will assign the issue to the developer deemed most qualified to fix it.

5 Challenges

5.1 Feasibility
This project is feasible because every member of our team has been

exposed to the various components of our solution, such as Java, hashing, and
SQL. While the project may prove difficult to integrate since there are a lot of
modular components, we have a firm grasp of the underlying technologies
required to implement a solution. Setting up a system where we can test our
code on a very large dataset is required and after consulting with our faculty
advisor we believe we will be able to do so using university resources. For these
reasons, we are confident in our ability to create a proprietary solution. The
feasibility of implementing existing big data solutions is more variable since none
of our group members have experience in this area. However, we have worked
research time into our schedule and this step involves adapting an existing
solution, not development of a new solution. Because of this, we do not foresee
implementing existing solutions reducing project feasibility.

14

5.2 Cost Estimate
We do not expect to incur a cost for developing our proprietary solution.

This is due to the project being entirely software based, us not receiving payment
for our work, and each member having access to the necessary equipment
through Iowa state or personal ownership to complete this project. After we
finish, the machine at Kingland where we deploy our solution will have
associated running costs. However, they already perform this task with a
dedicated machine and our solution will end up saving them money since it
should be running less often. Third party solutions that we will look into usually
have a per usage hour cost associated with them, typically less than a dollar per
hour. Thus, this cost would remain relatively small in the development phase and
only become substantial if Kindland decides to pursue one of these options
permanently. We anticipate working on this project approximately six to ten hours
a week for the entirety of two semesters.

6 Timeline

6.1 First Semester
The first semester will be focused on design of the proprietary solution. In the

course of the semester a prototype of the proprietary solution will be created. This
prototype will be demonstrated to Kingland to confirm that it functions as desired and to
present the time estimates of the final application. The time estimates provided are
based on the complexity of each part and the date it will need to be delivered by. Table
6.1 below shows the timeline of the semester indicating when deliverables should be
completed.

Deliverable Description Start Date Due Date

Project Plan V1 Initial draft of the
project plan

09/15/2017 09/24/2017

Team Website V1 Initial version of
the team website

09/15/2017 09/24/2017

Project Prototype Prototype version
of the application

09/27/2017 12/01/2017

15

Config File
Prototype

Prototype of
configuration file
for report parser

09/27/2017 10/06/2017

Design Document
V1

Initial version of
the design
document

10/06/2017 10/13/2017

Configuration
Parser Prototype

Prototype of the
data configuration
parser

10/06/2017 10/23/2017

Raw Data Parser
Prototype

Prototype of the
raw data parser

10/10/2017 11/06/2017

Project Plan V2 Revised project
plan

10/20/2017 10/27/2017

Exporter Prototype Prototype of the
exporter with
basic hashing

11/01/2017 11/16/2017

Inconsistency
Detection Prototype

Prototype of
inconsistency
detection

11/07/2017 12/01/2017

Final Project Plan Final version of
the project plan

11/27/2017 12/01/2017

Design Document
V2

Revised Design
Document

11/27/2017 12/04/2017

Table 6.1: First semester project timeline.

6.2 Second Semester
The second semester will be focused on the complete implementation of the

proprietary solution and analysis of industry solutions. The beginning of the semester will
be spent making the prototypes, developed in the first semester, fully functional. Once
this is completed the solution will need to be analysed to ensure that it meets Kingland’s
expectations. Our group will also begin research into industry standard solutions to see if
these can provide more benefit to Kingland or if they can be integrated with the
proprietary solution. A final analysis of the solutions will need to be developed with our
recommendation to Kingland as to what solution will best fit their needs. The time
estimates provided in the table are based on the complexity of each deliverable along

16

with the team knowledge in the areas related to each deliverable. Table 6.2 below
provides the overall schedule of the semester.

17

Deliverable Description Start Date Due Date

Implementation Implementation of
proprietary solution

01/08/2018 02/22/2018

Data
Configuration File

Create final format
of the data
configuration file

01/08/2018 01/15/2018

Matching
Configuration File

Create final format
of the matching
configuration file

01/08/2018 01/15/2018

Data
Configuration
Parser

Create final version
of data
configuration parser
with all functionality

01/16/2018 01/23/2018

Matching
Configuration
Parser

Create final version
of the matching
configuration parser
with all functionality

01/16/2018 01/23/2018

Raw Data Parser Create final version
of the raw data
parser with all
functionality

01/24/2018 02/07/2018

Inconsistency
Checker

Create final version
of the inconsistency
checker with all
functionality

01/24/2018 02/07/2018

Exporter Create final version
of the exporter with
all functionality

02/08/2018 02/22/2018

Analysis Analysis of
proprietary solution
against industry
standard solutions

02/23/2018 03/23/2018

18

Runtime analysis
of proprietary
solution

Analysis of the
runtime needed for
the proprietary
solution on large
datasets

02/23/2018 03/01/2018

Analysis of
Apache Spark

Analysis of utilizing
Apache Spark for
inconsistency
detection

02/23/2018 03/16/2018

Analysis of Azure
Data Lake

Analysis of utilizing
Azure Data Lake
for inconsistency
detection

02/23/2018 03/16/2018

Analysis of
Hadoop

Analysis of utilizing
Hadoop for
inconsistency
detection

02/23/2018 03/16/2018

Final Analysis of
Proprietary and
Industry Solutions

Analysis of the best
option for Kingland
to utilize in
inconsistency
detection

03/16/2018 03/23/2018

User Manual User manual for
proprietary solution

03/23/2018 04/06/2018

Final Report Final report of
project outcomes
and analysis

03/23/2018 04/20/2018

Table 6.2: Second semester project timeline.

19

7 Closing Material

7.1 Conclusion
Kingland is in need of a product that can detect inconsistencies in large

data sets in an efficient manner so that they can reduce the resources necessary
to run these daily detections. Our product will solve this problem by using hash
functions to reduce the size of the information that is being compared as well as
only comparing specific information that is sensitive to individuals and companies
to ensure the consistency of that information. This product will execute faster
than the current method of using SQL inner join statements and will allow a
larger amount of data to be processed concurrently because of the smaller
overall data footprint. Our product will save Kingland time and money in their
inconsistency detection.

7.2 References
Haufler, Andreas. “Conveniently Processing Large XML Files with Java.”

Dzone.com, 10 Jan. 2012,
dzone.com/articles/conveniently-processing-large.

Murnane, Tafline. “ISO/IEC/IEEE 29119 Software Testing.” ISO/IEC/IEEE 29119

Software Testing Standard, softwaretestingstandard.org, 24 Oct. 2013,
www.softwaretestingstandard.org/part4.php.

Smrcka, Ales I., Ph.D. "TEST PLAN OUTLINE (IEEE 829 Format)." IEEE 829 -

Standard for Test Documentation Overview. Brno University of
Technology, n.d. Web.

Staveley, Alex. “JAXB, SAX, DOM Performance.” Dzone.com, 31 Dec. 2011,

dzone.com/articles/jaxb-sax-dom-performance.

Sug, Hyontai. "An Efficient Method of Data Inconsistency Check for Very Large

Relations." S International Journal of Computer Science and Network
Security 7.10 (2007): 166-69. Web. 22 Sept. 2017.

Zhang, Du. (2013). Inconsistencies in big data. Proceedings of the 12th IEEE

International Conference on Cognitive Informatics and Cognitive

20

Computing, ICCI*CC 2013. 61-67. 10.1109/ICCI-CC.2013.6622226.

7.3 Appendices

7.3.1 List of Figures

Figure Number Figure Description

Figure 2.1 Block diagram of high-level system architecture.

7.3.2 List of Tables

Figure Number Figure Description

Table 4.1 Table of validation and acceptance tests

Table 6.1 First semester project timeline

Table 6.2 Second semester project timeline

21

