
Introduction
Problem

Kingland performs inconsistency detection on 500,000 +
entries against a database of 100 million records. This
process currently takes an average of a day (24 hours) to
complete.

Need
Kingland needs a system than can perform these
inconsistencies more quickly to save time and resources as
well as being able to add more inconsistencies as needed.

Solution
Our solution improves the efficiency by reducing memory
used, making smaller SQL queries, and using multi-threading.

Data Analytic Tools for Inconsistency Detection in Large Data Sets
sdmay18-27

Faculty Adviser: Dr. Ying Cai
Client: Kingland Systems

Team: Christopher Konopka, Logan Heitz, TJ Rogers, Camden Voigt

Design Requirements
Functional Requirements
❏ Configurable
❏ Don’t use SQL Inner-Join statements
❏ Solution must validate all fields are present in data
❏ Solution must compare current records to previous records as well as

other current records
❏ Solution must detect all inconsistencies

Non-Functional Requirements
❏ Completes faster than current solution
❏ Solution must work with central Database of more than 100 million

records
Engineering Constraints
❏ Compatible with MySQL
❏ Must handle XML Input

Operating Environment
❏ Amazon Web Service

Users & Uses
Users
❏ Kingland’s Data Analysts.

Uses
❏ To detect inconsistencies in

Kingland’s daily reports

Block Diagram

Testing
Testing Environment
❏ Followed Test Driven Development principles
❏ Automated pipeline to run after every git push
❏ AWS Instance (db.m4.2xlarge)

❏ vCPU: 8
❏ Memory (GiB): 32

❏ Local Machine
❏ Intel® Core™ i7-7700K CPU @ 4.20GHz
❏ Memory (GiB): 32
❏ Storage (GiB): 356

Testing Strategy
❏ JUnit Tests
❏ Integration Tests
❏ Mockito for independent Unit Tests
❏ Maven Plugins to manage Integration Testing

Goals
❏ Performance Testing

Technical Details
Details of Functional Modules
❏ All modules implemented in Java
❏ Developed in Intellij
❏ Inconsistency Checker

❏ Uses Apache Commons CLI to
parse command line options

❏ Raw Data Parser
❏ Uses Sax XML Parser

❏ Storage
❏ Uses JDBC to connect to

database
❏ Uses Apache Commons DBCP

for connection pooling
❏ Apache Log4j utilized for logging

throughout project

Standards
Testing Protocols
❏ IEEE 829

❏ Software testing documentation
❏ SO/IEC/IEEE 29119-4

❏ Test techniques
Ethics
❏ ISO 17799

❏ Regarding information security

Functional Modules
Data Configuration
❏ Allows users to configure how the project stores data
❏ Reads and XML Configuration file to get user options

Raw Data Parser
❏ Parses the input XML file
❏ Calls inconsistency checker to check each record read

Inconsistency Parser
❏ Parses the inconsistency file to see which inconsistencies

the program should check
Inconsistency Checker
❏ Checks new records against database for inconsistencies

Threader
❏ Manages Threads and Thread Pools

Storage
❏ Provides an interface to save records to various storage

mediums
❏ Provides inconsistency detection queries

Concept Diagram

Performance Results

